
ESSENTIALS OF
PROGRAMMING
LANGUAGES

Daniel P. Friedman and Mitchell Wand

THIRD EDITION

ESSEN
TIA

LS O
F

PR
O

G
R

A
M

M
IN

G
 LA

N
G

U
A

G
ES

TH
IR

D
 ED

ITIO
N

Friedm
an and W

and

M
D

 D
A

L
IM

 955472 3/22/08 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
A

C
K

computer science/programming languages

Essentials of Programming Languages
third edition
Daniel P. Friedman and Mitchell Wand

This book provides students with a deep, working understanding of the essential concepts of program-
ming languages. Most of these essentials relate to the semantics, or meaning, of program elements,
and the text uses interpreters (short programs that directly analyze an abstract representation of the
program text) to express the semantics of many essential language elements in a way that is both clear
and executable. The approach is both analytical and hands-on. The book provides views of program-
ming languages using widely varying levels of abstraction, maintaining a clear connection between the
high-level and low-level views. Exercises are a vital part of the text and are scattered throughout; the text
explains the key concepts, and the exercises explore alternative designs and other issues. The complete
Scheme code for all the interpreters and analyzers in the book can be found online through The MIT
Press website.
 For this new edition, each chapter has been revised and many new exercises have been added.
Significant additions have been made to the text, including completely new chapters on modules and
continuation-passing style. Essentials of Programming Languages can be used for both graduate and un-
dergraduate courses, and for continuing education courses for programmers.

Daniel P. Friedman is Professor of Computer Science at Indiana University and is the author of many
books published by The MIT Press, including The Little Schemer (fourth edition, 1995), The Seasoned
Schemer (1995), A Little Java, A Few Patterns (1997), each of these coauthored with Matthias Felleisen,
and The Reasoned Schemer (2005), coauthored with William E. Byrd and Oleg Kiselyov. Mitchell Wand is
Professor of Computer Science at Northeastern University.

“With lucid prose and elegant code, this book provides the most concrete introduction to the few build-
ing blocks that give rise to a wide variety of programming languages. I recommend it to my students and
look forward to using it in my courses.”
—Chung-chieh Shan, Department of Computer Science, Rutgers University

“Having taught from EOPL for several years, I appreciate the way it produces students who understand
the terminology and concepts of programming languages in a deep way, not just from reading about the
concepts, but from programming them and experimenting with them. This new edition has an increased
emphasis on types as contracts for defining procedure interfaces, which is quite important for many
students.”
—Gary T. Leavens, School of Electrical Engineering and Computer Science, University of Central Florida

“I’ve found the interpreters-based approach for teaching programming languages to be both compelling
and rewarding for my students. Exposing students to the revelation that an interpreter for a program-
ming language is itself just another program opens up a world of possibilities for problem solving. The
third edition of Essentials of Programming Languages makes this approach of writing interpreters more
accessible than ever.”
—Marc L. Smith, Department of Computer Science, Vassar College

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

978-0-262-06279-4

Essentials of

Programming

Languages

third edition

Essentials of
Programming

Languages

third edition

Daniel P. Friedman

Mitchell Wand

The MIT Press
Cambridge, Massachusetts

London, England

© 2008 Daniel P. Friedman and Mitchell Wand

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales
promotional use. For information, please email special_sales@mitpress.mit.edu or
write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge,
MA 02142.

This book was set in LATEX 2ε by the authors, and was printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Friedman, Daniel P.
Essentials of programming languages / Daniel P. Friedman, Mitchell
Wand.
—3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-262-06279-4 (hbk. : alk. paper)
1. Programming Languages (Electronic computers). I. Wand,
Mitchell. II. Title.

QA76.7.F73 2008
005.1—dc22 2007039723

10 9 8 7 6 5 4 3 2 1

Contents

Foreword by Hal Abelson ix

Preface xv

Acknowledgments xxi

1 Inductive Sets of Data 1
1.1 Recursively Specified Data 1
1.2 Deriving Recursive Programs 12
1.3 Auxiliary Procedures and Context Arguments 22
1.4 Exercises 25

2 Data Abstraction 31
2.1 Specifying Data via Interfaces 31
2.2 Representation Strategies for Data Types 35
2.3 Interfaces for Recursive Data Types 42
2.4 A Tool for Defining Recursive Data Types 45
2.5 Abstract Syntax and Its Representation 51

3 Expressions 57
3.1 Specification and Implementation Strategy 57
3.2 LET: A Simple Language 60
3.3 PROC: A Language with Procedures 74
3.4 LETREC: A Language with Recursive Procedures 82
3.5 Scoping and Binding of Variables 87
3.6 Eliminating Variable Names 91
3.7 Implementing Lexical Addressing 93

vi Contents

4 State 103
4.1 Computational Effects 103
4.2 EXPLICIT-REFS: A Language with Explicit References 104
4.3 IMPLICIT-REFS: A Language with Implicit References 113
4.4 MUTABLE-PAIRS: A Language with Mutable Pairs 124
4.5 Parameter-Passing Variations 130

5 Continuation-Passing Interpreters 139
5.1 A Continuation-Passing Interpreter 141
5.2 A Trampolined Interpreter 155
5.3 An Imperative Interpreter 160
5.4 Exceptions 171
5.5 Threads 179

6 Continuation-Passing Style 193
6.1 Writing Programs in Continuation-Passing Style 193
6.2 Tail Form 203
6.3 Converting to Continuation-Passing Style 212
6.4 Modeling Computational Effects 226

7 Types 233
7.1 Values and Their Types 235
7.2 Assigning a Type to an Expression 238
7.3 CHECKED: A Type-Checked Language 240
7.4 INFERRED: A Language with Type Inference 248

8 Modules 275
8.1 The Simple Module System 276
8.2 Modules That Declare Types 292
8.3 Module Procedures 311

9 Objects and Classes 325
9.1 Object-Oriented Programming 326
9.2 Inheritance 329
9.3 The Language 334
9.4 The Interpreter 336
9.5 A Typed Language 352
9.6 The Type Checker 358

Contents vii

A For Further Reading 373

B The SLLGEN Parsing System 379
B.1 Scanning 379
B.2 Parsing 382
B.3 Scanners and Parsers in SLLGEN 383

Bibliography 393

Index 401

Foreword

This book brings you face-to-face with the most fundamental idea in com-
puter programming:

The interpreter for a computer language is just another program.

It sounds obvious, doesn’t it? But the implications are profound. If you
are a computational theorist, the interpreter idea recalls Gödel’s discovery
of the limitations of formal logical systems, Turing’s concept of a universal
computer, and von Neumann’s basic notion of the stored-program machine.
If you are a programmer, mastering the idea of an interpreter is a source of
great power. It provokes a real shift in mindset, a basic change in the way
you think about programming.

I did a lot of programming before I learned about interpreters, and I pro-
duced some substantial programs. One of them, for example, was a large
data-entry and information-retrieval system written in PL/I. When I imple-
mented my system, I viewed PL/I as a fixed collection of rules established
by some unapproachable group of language designers. I saw my job as not
to modify these rules, or even to understand them deeply, but rather to pick
through the (very) large manual, selecting this or that feature to use. The
notion that there was some underlying structure to the way the language was
organized, and that I might want to override some of the language design-
ers’ decisions, never occurred to me. I didn’t know how to create embedded
sublanguages to help organize my implementation, so the entire program
seemed like a large, complex mosaic, where each piece had to be carefully
shaped and fitted into place, rather than a cluster of languages, where the
pieces could be flexibly combined. If you don’t understand interpreters, you
can still write programs; you can even be a competent programmer. But you
can’t be a master.

x Foreword

There are three reasons why as a programmer you should learn about
interpreters.

First, you will need at some point to implement interpreters, perhaps not
interpreters for full-blown general-purpose languages, but interpreters just
the same. Almost every complex computer system with which people inter-
act in flexible ways—a computer drawing tool or an information-retrieval
system, for example—includes some sort of interpreter that structures the
interaction. These programs may include complex individual operations—
shading a region on the display screen, or performing a database search—
but the interpreter is the glue that lets you combine individual operations
into useful patterns. Can you use the result of one operation as the input to
another operation? Can you name a sequence of operations? Is the name
local or global? Can you parameterize a sequence of operations, and give
names to its inputs? And so on. No matter how complex and polished the
individual operations are, it is often the quality of the glue that most directly
determines the power of the system. It’s easy to find examples of programs
with good individual operations, but lousy glue; looking back on it, I can see
that my PL/I database program certainly had lousy glue.

Second, even programs that are not themselves interpreters have impor-
tant interpreter-like pieces. Look inside a sophisticated computer-aided
design system and you’re likely to find a geometric recognition language, a
graphics interpreter, a rule-based control interpreter, and an object-oriented
language interpreter all working together. One of the most powerful ways
to structure a complex program is as a collection of languages, each of which
provides a different perspective, a different way of working with the pro-
gram elements. Choosing the right kind of language for the right purpose,
and understanding the implementation tradeoffs involved: that’s what the
study of interpreters is about.

The third reason for learning about interpreters is that programming tech-
niques that explicitly involve the structure of language are becoming increas-
ingly important. Today’s concern with designing and manipulating class
hierarchies in object-oriented systems is only one example of this trend. Per-
haps this is an inevitable consequence of the fact that our programs are
becoming increasingly complex—thinking more explicitly about languages
may be our best tool for dealing with this complexity. Consider again the
basic idea: the interpreter itself is just a program. But that program is writ-
ten in some language, whose interpreter is itself just a program written
in some language whose interpreter is itself . . . Perhaps the whole distinc-
tion between program and programming language is a misleading idea, and

Foreword xi

future programmers will see themselves not as writing programs in particu-
lar, but as creating new languages for each new application.

Friedman and Wand have done a landmark job, and their book will change
the landscape of programming-language courses. They don’t just tell you
about interpreters; they show them to you. The core of the book is a tour de
force sequence of interpreters starting with an abstract high-level language
and progressively making linguistic features explicit until we reach a state
machine. You can actually run this code, study and modify it, and change the
way these interpreters handle scoping, parameter-passing, control structure,
etc.

Having used interpreters to study the execution of languages, the authors
show how the same ideas can be used to analyze programs without run-
ning them. In two new chapters, they show how to implement type checkers
and inferencers, and how these features interact in modern object-oriented
languages.

Part of the reason for the appeal of this approach is that the authors have
chosen a good tool—the Scheme language, which combines the uniform syn-
tax and data-abstraction capabilities of Lisp with the lexical scoping and
block structure of Algol. But a powerful tool becomes most powerful in the
hands of masters. The sample interpreters in this book are outstanding mod-
els. Indeed, since they are runnable models, I’m sure that these interpreters
and analyzers will find themselves at the cores of many programming sys-
tems over the coming years.

This is not an easy book. Mastery of interpreters does not come easily,
and for good reason. The language designer is a further level removed from
the end user than is the ordinary application programmer. In designing an
application program, you think about the specific tasks to be performed, and
consider what features to include. But in designing a language, you consider
the various applications people might want to implement, and the ways in
which they might implement them. Should your language have static or
dynamic scope, or a mixture? Should it have inheritance? Should it pass
parameters by reference or by value? Should continuations be explicit or
implicit? It all depends on how you expect your language to be used, which
kinds of programs should be easy to write, and which you can afford to make
more difficult.

Also, interpreters really are subtle programs. A simple change to a line of
code in an interpreter can make an enormous difference in the behavior of
the resulting language. Don’t think that you can just skim these programs—
very few people in the world can glance at a new interpreter and predict

xii Foreword

from that how it will behave even on relatively simple programs. So study
these programs. Better yet, run them—this is working code. Try interpreting
some simple expressions, then more complex ones. Add error messages.
Modify the interpreters. Design your own variations. Try to really master
these programs, not just get a vague feeling for how they work.

If you do this, you will change your view of your programming, and your
view of yourself as a programmer. You’ll come to see yourself as a designer
of languages rather than only a user of languages, as a person who chooses
the rules by which languages are put together, rather than only a follower of
rules that other people have chosen.

Postscript to the Third Edition

The foreword above was written only seven years ago. Since then, informa-
tion applications and services have entered the lives of people around the
world in ways that hardly seemed possible in 1990. They are powered by
an ever—growing collection of programming languages and programming
frameworks—all erected on an ever-expanding platform of interpreters.

Do you want to create Web pages? In 1990, that meant formatting static
text and graphics, in effect, creating a program to be run by browsers exe-
cuting only a single “print” statement. Today’s dynamic Web pages make
full use of scripting languages (another name for interpreted languages) like
Javascript. The browser programs can be complex, and including asyn-
chronous calls to a Web server that is typically running a program in a com-
pletely different programming framework possibly with a host of services,
each with its own individual language.

Or you might be creating a bot for enhancing the performance of your
avatar in a massive online multiplayer game like World of Warcraft. In that
case, you’re probably using a scripting language like Lua, possibly with an
object-oriented extension to help in expressing classes of behaviors.

Or maybe you’re programming a massive computing cluster to do index-
ing and searching on a global scale. If so, you might be writing your pro-
grams using the map-reduce paradigm of functional programming to relieve
you of dealing explicitly with the details of how the individual processors are
scheduled.

Foreword xiii

Or perhaps you’re developing new algorithms for sensor networks, and
exploring the use of lazy evaluation to better deal with parallelism and data
aggregation. Or exploring transformation systems like XSLT for controlling
Web pages. Or designing frameworks for transforming and remixing multi-
media streams. Or . . .

So many new applications! So many new languages! So many new inter-
preters!

As ever, novice programmers, even capable ones, can get along viewing
each new framework individually, working within its fixed set of rules. But
creating new frameworks requires skills of the master: understanding the
principles that run across languages, appreciating which language features
are best suited for which type of application, and knowing how to craft the
interpreters that bring these languages to life. These are the skills you will
learn from this book.

Hal Abelson
Cambridge, Massachusetts
September 2007

Preface

Goal

This book is an analytic study of programming languages. Our goal is to
provide a deep, working understanding of the essential concepts of program-
ming languages. These essentials have proved to be of enduring importance;
they form a basis for understanding future developments in programming
languages.

Most of these essentials relate to the semantics, or meaning, of program
elements. Such meanings reflect how program elements are interpreted as
the program executes. Programs called interpreters provide the most direct,
executable expression of program semantics. They process a program by
directly analyzing an abstract representation of the program text. We there-
fore choose interpreters as our primary vehicle for expressing the semantics
of programming language elements.

The most interesting question about a program as object is, “What does it
do?” The study of interpreters tells us this. Interpreters are critical because
they reveal nuances of meaning, and are the direct path to more efficient
compilation and to other kinds of program analyses.

Interpreters are also illustrative of a broad class of systems that transform
information from one form to another based on syntax structure. Compil-
ers, for example, transform programs into forms suitable for interpretation
by hardware or virtual machines. Though general compilation techniques
are beyond the scope of this book, we do develop several elementary pro-
gram translation systems. These reflect forms of program analysis typical
of compilation, such as control transformation, variable binding resolution,
and type checking.

xvi Preface

The following are some of the strategies that distinguish our approach.

1. Each new concept is explained through the use of a small language. These
languages are often cumulative: later languages may rely on the features
of earlier ones.

2. Language processors such as interpreters and type checkers are used to
explain the behavior of programs in a given language. They express lan-
guage design decisions in a manner that is both formal (unambiguous and
complete) and executable.

3. When appropriate, we use interfaces and specifications to create data
abstractions. In this way, we can change data representation without
changing programs. We use this to investigate alternative implementa-
tion strategies.

4. Our language processors are written both at the very high level needed to
produce a concise and comprehensible view of semantics and at the much
lower level needed to understand implementation strategies.

5. We show how simple algebraic manipulation can be used to predict the
behavior of programs and to derive their properties. In general, however,
we make little use of mathematical notation, preferring instead to study
the behavior of programs that constitute the implementations of our lan-
guages.

6. The text explains the key concepts, while the exercises explore alternative
designs and other issues. For example, the text deals with static binding,
but dynamic binding is discussed in the exercises. One thread of exer-
cises applies the concept of lexical addressing to the various languages
developed in the book.

We provide several views of programming languages using widely vary-
ing levels of abstraction. Frequently our interpreters provide a very high-
level view that expresses language semantics in a very concise fashion, not
far from that of formal mathematical semantics. At the other extreme, we
demonstrate how programs may be transformed into a very low-level form
characteristic of assembly language. By accomplishing this transformation
in small stages, we maintain a clear connection between the high-level and
low-level views.

Preface xvii

We have made some significant changes to this edition. We have includ-
ed informal contracts with all nontrivial definitions. This has the effect of
clarifying the chosen abstractions. In addition, the chapter on modules is
completely new. To make implementations simpler, the source language for
chapters 3, 4, 5, 7, and 8 assumes that exactly one argument can be passed
to a function; we have included exercises that support multiargument pro-
cedures. Chapter 6 is completely new, since we have opted for a first-order
compositional continuation-passing-style transform rather than a relational
one. Also, because of the nature of tail-form expressions, we use multiargu-
ment procedures here, and in the objects and classes chapter, we do the same,
though there it is not so necessary. Every chapter has been revised and many
new exercises have been added.

Organization

The first two chapters provide the foundations for a careful study of pro-
gramming languages. Chapter 1 emphasizes the connection between induc-
tive data specification and recursive programming and introduces several
notions related to the scope of variables. Chapter 2 introduces a data type
facility. This leads to a discussion of data abstraction and examples of repre-
sentational transformations of the sort used in subsequent chapters.

Chapter 3 uses these foundations to describe the behavior of programming
languages. It introduces interpreters as mechanisms for explaining the run-
time behavior of languages and develops an interpreter for a simple, lexically
scoped language with first-class procedures and recursion. This interpreter is
the basis for much of the material in the remainder of the book. The chapter
ends by giving a thorough treatment of a language that uses indices in place
of variables and as a result variable lookup can be via a list reference.

Chapter 4 introduces a new component, the state, which maps locations
to values. Once this is added, we can look at various questions of represen-
tation. In addition, it permits us to explore call-by-reference, call-by-name,
and call-by-need parameter-passing mechanisms.

Chapter 5 rewrites our basic interpreter in continuation-passing style. The
control structure that is needed to run the interpreter thereby shifts from
recursion to iteration. This exposes the control mechanisms of the interpreted
language, and strengthens one’s intuition for control issues in general. It also
allows us to extend the language with trampolining, exception-handling,
and multithreading mechanisms.

xviii Preface

Chapter 6 is the companion to the previous chapter. There we show
how to transform our familiar interpreter into continuation-passing style;
here we show how to accomplish this for a much larger class of programs.
Continuation-passing style is a powerful programming tool, for it allows any
sequential control mechanism to be implemented in almost any language.
The algorithm is also an example of an abstractly specified source-to-source
program transformation.

Chapter 7 turns the language of chapter 3 into a typed language. First we
implement a type checker. Then we show how the types in a program can be
deduced by a unification-based type inference algorithm.

Chapter 8 builds typed modules relying heavily on an understanding of
the previous chapter. Modules allow us to build and enforce abstraction
boundaries, and they offer a new kind of scoping.

Chapter 9 presents the basic concepts of object-oriented languages, cen-
tered on classes. We first develop an efficient run-time architecture, which
is used as the basis for the material in the second part of the chapter. The
second part combines the ideas of the type checker of chapter 7 with those of
the object-oriented language of the first part, leading to a conventional typed
object-oriented language. This requires introducing new concepts including
interfaces, abstract methods, and casting.

For Further Reading explains where each of the ideas in the book has come
from. This is a personal walk-through allowing the reader the opportunity to
visit each topic from the original paper, though in some cases, we have just
chosen an accessible source.

Finally, appendix B describes our SLLGEN parsing system.
The dependencies of the various chapters are shown in the figure below.

Preface xix

Usage

This material has been used in both undergraduate and graduate courses.
Also, it has been used in continuing education courses for professional pro-
grammers. We assume background in data structures and experience both in
a procedural language such as C, C++, or Java, and in Scheme, ML, Python,
or Haskell.

Exercises are a vital part of the text and are scattered throughout. They
range in difficulty from being trivial if related material is understood [�], to
requiring many hours of thought and programming work [� � �]. A great
deal of material of applied, historical, and theoretical interest resides within
them. We recommend that each exercise be read and some thought be given
as to how to solve it. Although we write our program interpretation and
transformation systems in Scheme, any language that supports both first-
class procedures and assignment (ML, Common Lisp, Python, Ruby, etc.) is
adequate for working the exercises.

Exercise 0.1 [�] We often use phrases like “some languages have property X.” For
each such phrase, find one or more languages that have the property and one or more
languages that do not have the property. Feel free to ferret out this information from
any descriptive book on programming languages (say Scott (2005), Sebesta (2007), or
Pratt & Zelkowitz (2001)).

This is a hands-on book: everything discussed in the book may be imple-
mented within the limits of a typical university course. Because the abstrac-
tion facilities of functional programming languages are especially suited to
this sort of programming, we can write substantial language-processing sys-
tems that are nevertheless compact enough that one can understand and
manipulate them with reasonable effort.

The web site, available through the publisher, includes complete Scheme
code for all of the interpreters and analyzers in this book. The code is writ-
ten in PLT Scheme. We chose this Scheme implementation because its mod-
ule system and programming environment provide a substantial advantage
to the student. The code is largely R5RS-compatible, and should be easily
portable to any full-featured Scheme implementation.

Acknowledgments

We are indebted to countless colleagues and students who used and cri-
tiqued the first two editions of this book and provided invaluable assistance
in the long gestation of this third edition. We are especially grateful for
the contributions of the following individuals, to whom we offer a special
word of thanks. Olivier Danvy encouraged our consideration of a first-order
compositional continuation-passing algorithm and proposed some interest-
ing exercises. Matthias Felleisen’s keen analysis has improved the design
of several chapters. Amr Sabry made many useful suggestions and found
at least one extremely subtle bug in a draft of chapter 9. Benjamin Pierce
offered a number of insightful observations after teaching from the first edi-
tion, almost all of which we have incorporated. Gary Leavens provided
exceptionally thorough and valuable comments on early drafts of the sec-
ond edition, including a large number of detailed suggestions for change.
Stephanie Weirich found a subtle bug in the type inference code of the sec-
ond edition of chapter 7. Ryan Newton, in addition to reading a draft of the
second edition, assumed the onerous task of suggesting a difficulty level for
each exercise for that edition. Chung-chieh Shan taught from an early draft
of the third edition and provided copious and useful comments.

Kevin Millikin, Arthur Lee, Roger Kirchner, Max Hailperin, and Erik Hils-
dale all used early drafts of the second edition. Will Clinger, Will Byrd,
Joe Near, and Kyle Blocher all used drafts of this edition. Their comments
have been extremely valuable. Ron Garcia, Matthew Flatt, Shriram Krish-
namurthi, Steve Ganz, Gregor Kiczales, Marlene Miller, Galen Williamson,
Dipanwita Sarkar, Steven Bogaerts, Albert Rossi, Craig Citro, Christopher
Dutchyn, Jeremy Siek, and Neil Ching also provided careful reading and
useful comments.

xxii Acknowledgments

Several people deserve special thanks for assisting us with this book. We
want to thank Neil Ching for developing the index. Jonathan Sobel and
Erik Hilsdale built several prototype implementations and contributed many
ideas as we experimented with the design of the define-datatype and
cases syntactic extensions. The Programming Language Team, and espe-
cially Matthias Felleisen, Matthew Flatt, Robby Findler, and Shriram Krish-
namurthi, were very helpful in providing compatibility with their DrScheme
system. Kent Dybvig developed the exceptionally efficient and robust Chez
Scheme implementation, which the authors have used for decades. Will
Byrd has provided invaluable assistance during the entire process. Matthias
Felleisen strongly urged us to adopt compatibility with DrScheme’s mod-
ule system, which is evident in the implementation that can be found at
http://mitpress.mit.edu/eopl3.

Some have earned special mention for their thoughtfulness and concern
for our well-being. George Springer and Larry Finkelstein have each sup-
plied invaluable support. Bob Prior, our wonderful editor at MIT Press,
deserves special thanks for his encouragement in getting us to attack the
writing of this edition. Ada Brunstein, Bob’s successor, also deserves thanks
for making our transition to a new editor so smoothly. Indiana University’s
School of Informatics and Northeastern University’s College of Computer
and Information Science have created an environment that has allowed us to
undertake this project. Mary Friedman’s gracious hosting of several week-
long writing sessions did much to accelerate our progress.

We want to thank Christopher T. Haynes for his collaboration on the first
two editions. Unfortunately, his interests have shifted elsewhere, and he has
not continued with us on this edition.

Finally, we are most grateful to our families for tolerating our passion for
working on the book. Thank you Rob, Shannon, Rachel, Sara, and Mary; and
thank you Rebecca and Joshua, Jennifer and Stephen, Joshua and Georgia,
and Barbara.

This edition has been in the works for a while and we have likely over-
looked someone who has helped along the way. We regret any oversight.
You see this written in books all the time and wonder why anyone would
write it. Of course, you regret any oversight. But, when you have an army of
helpers (it takes a village), you really feel a sense of obligation not to forget
anyone. So, if you were overlooked, we are truly sorry.

— D.P.F. and M.W.

1 Inductive Sets of Data

This chapter introduces the basic programming tools we will need to write
interpreters, checkers and similar programs that form the heart of a program-
ming language processor.

Because the syntax of a program in a language is usually a nested or tree-
like structure, recursion will be at the core of our techniques. Section 1.1
and section 1.2 introduce methods for inductively specifying data structures
and show how such specifications may be used to guide the construction
of recursive programs. Section 1.3 shows how to extend these techniques
to more complex problems. The chapter concludes with an extensive set of
exercises. These exercises are the heart of this chapter. They provide experi-
ence that is essential for mastering the technique of recursive programming
upon which the rest of this book is based.

1.1 Recursively Specified Data

When writing code for a procedure, we must know precisely what kinds of
values may occur as arguments to the procedure, and what kinds of values
are legal for the procedure to return. Often these sets of values are complex.
In this section we introduce formal techniques for specifying sets of values.

1.1.1 Inductive Specification

Inductive specification is a powerful method of specifying a set of values. To
illustrate this method, we use it to describe a certain subset S of the natural
numbers N = {0, 1, 2, . . .}.

2 1 Inductive Sets of Data

Definition 1.1.1 A natural number n is in S if and only if

1. n = 0, or

2. n − 3 ∈ S.

Let us see how we can use this definition to determine what natural num-
bers are in S. We know that 0 ∈ S. Therefore 3 ∈ S, since (3 − 3) = 0 and
0 ∈ S. Similarly 6 ∈ S, since (6− 3) = 3 and 3 ∈ S. Continuing in this way, we
can conclude that all multiples of 3 are in S.

What about other natural numbers? Is 1 ∈ S? We know that 1 �= 0, so the
first condition is not satisfied. Furthermore, (1− 3) = −2, which is not a nat-
ural number and thus is not a member of S. Therefore the second condition
is not satisfied. Since 1 satisfies neither condition, 1 �∈ S. Similarly, 2 �∈ S.
What about 4? 4 ∈ S only if 1 ∈ S. But 1 �∈ S, so 4 �∈ S, as well. Similarly,
we can conclude that if n is a natural number and is not a multiple of 3, then
n �∈ S.

From this argument, we conclude that S is the set of natural numbers that
are multiples of 3.

We can use this definition to write a procedure to decide whether a natural
number n is in S.

in-S? : N → Bool
usage: (in-S? n) = #t if n is in S, #f otherwise
(define in-S?

(lambda (n)
(if (zero? n) #t

(if (>= (- n 3) 0)
(in-S? (- n 3))
#f))))

Here we have written a recursive procedure in Scheme that follows the
definition. The notation in-S? : N → Bool is a comment, called the contract for
this procedure. It means that in-S? is intended to be a procedure that takes
a natural number and produces a boolean. Such comments are helpful for
reading and writing code.

To determine whether n ∈ S, we first ask whether n = 0. If it is, then the
answer is true. Otherwise we need to see whether n − 3 ∈ S. To do this, we
first check to see whether (n − 3) ≥ 0. If it is, we then can use our procedure
to see whether it is in S. If it is not, then n cannot be in S.

1.1 Recursively Specified Data 3

Here is an alternative way of writing down the definition of S.

Definition 1.1.2 Define the set S to be the smallest set contained in N and satisfy-
ing the following two properties:

1. 0 ∈ S, and

2. if n ∈ S, then n + 3 ∈ S.

A “smallest set” is the one that satisfies properties 1 and 2 and that is a
subset of any other set satisfying properties 1 and 2. It is easy to see that
there can be only one such set: if S1 and S2 both satisfy properties 1 and
2, and both are smallest, then S1 ⊆ S2 (since S1 is smallest), and S2 ⊆ S1

(since S2 is smallest), hence S1 = S2. We need this extra condition, because
otherwise there are many sets that satisfy the remaining two conditions (see
exercise 1.3).

Here is yet another way of writing the definition:

0 ∈ S

n ∈ S

(n + 3) ∈ S

This is simply a shorthand notation for the preceding version of the def-
inition. Each entry is called a rule of inference, or just a rule; the horizontal
line is read as an “if-then.” The part above the line is called the hypothesis
or the antecedent; the part below the line is called the conclusion or the conse-
quent. When there are two or more hypotheses listed, they are connected by
an implicit “and” (see definition 1.1.5). A rule with no hypotheses is called
an axiom. We often write an axiom without the horizontal line, like

0 ∈ S

The rules are interpreted as saying that a natural number n is in S if
and only if the statement “n ∈ S” can be derived from the axioms by using
the rules of inference finitely many times. This interpretation automatically
makes S the smallest set that is closed under the rules.

These definitions all say the same thing. We call the first version a top-down
definition, the second version a bottom-up definition, and the third version a
rules-of-inference version.

4 1 Inductive Sets of Data

Let us see how this works on some other examples.

Definition 1.1.3 (list of integers, top-down) A Scheme list is a list of integers
if and only if either

1. it is the empty list, or

2. it is a pair whose car is an integer and whose cdr is a list of integers.

We use Int to denote the set of all integers, and List-of-Int to denote the set
of lists of integers.

Definition 1.1.4 (list of integers, bottom-up) The set List-of-Int is the smallest
set of Scheme lists satisfying the following two properties:

1. () ∈ List-of-Int, and

2. if n ∈ Int and l ∈ List-of-Int, then (n . l) ∈ List-of-Int.

Here we use the infix “.” to denote the result of the cons operation in
Scheme. The phrase (n . l) denotes a Scheme pair whose car is n and
whose cdr is l.

Definition 1.1.5 (list of integers, rules of inference)

() ∈ List-of-Int

n ∈ Int l ∈ List-of-Int

(n . l) ∈ List-of-Int

These three definitions are equivalent. We can show how to use them to
generate some elements of List-of-Int.

1. () is a list of integers, because of property 1 of definition 1.1.4 or the first
rule of definition 1.1.5.

2. (14 . ()) is a list of integers, because of property 2 of definition 1.1.4,
since 14 is an integer and () is a list of integers. We can also write this as
an instance of the second rule for List-of-Int.

14 ∈ Int () ∈ List-of-Int

(14 . ()) ∈ List-of-Int

1.1 Recursively Specified Data 5

3. (3 . (14 . ())) is a list of integers, because of property 2, since 3
is an integer and (14 . ()) is a list of integers. We can write this as
another instance of the second rule for List-of-Int.

3 ∈ Int (14 . ()) ∈ List-of-Int

(3 . (14 . ())) ∈ List-of-Int

4. (-7 . (3 . (14 . ()))) is a list of integers, because of property 2,
since -7 is a integer and (3 . (14 . ())) is a list of integers. Once
more we can write this as an instance of the second rule for List-of-Int.

-7 ∈ Int (3 . (14 . ())) ∈ List-of-Int

(-7 . (3 . (14 . ()))) ∈ List-of-Int

5. Nothing is a list of integers unless it is built in this fashion.

Converting from dot notation to list notation, we see that (), (14), (3
14), and (-7 3 14) are all members of List-of-Int.

We can also combine the rules to get a picture of the entire chain of reason-
ing that shows that (-7 . (3 . (14 . ()))) ∈ List-of-Int. The tree-like
picture below is called a derivation or deduction tree.

-7 ∈ N

3 ∈ N

14 ∈ N () ∈ List-of-Int

(14 . ()) ∈ List-of-Int

(3 . (14 . ())) ∈ List-of-Int

(-7 . (3 . (14 . ()))) ∈ List-of-Int

Exercise 1.1 [�] Write inductive definitions of the following sets. Write each defini-
tion in all three styles (top-down, bottom-up, and rules of inference). Using your
rules, show the derivation of some sample elements of each set.

1. {3n + 2 | n ∈ N}

2. {2n + 3m + 1 | n, m ∈ N}

3. {(n, 2n + 1) | n ∈ N}

4. {(n, n2) | n ∈ N} Do not mention squaring in your rules. As a hint, remember the
equation (n + 1)2

= n2
+ 2n + 1.

Exercise 1.2 [� �] What sets are defined by the following pairs of rules? Explain why.

1. (0, 1) ∈ S
(n, k) ∈ S

(n + 1, k + 7) ∈ S

6 1 Inductive Sets of Data

2. (0, 1) ∈ S
(n, k) ∈ S

(n + 1, 2k) ∈ S

3. (0, 0, 1) ∈ S
(n, i, j)∈ S

(n + 1, j, i + j) ∈ S

4. [� � �] (0, 1, 0) ∈ S
(n, i, j) ∈ S

(n + 1, i + 2, i + j) ∈ S

Exercise 1.3 [�] Find a set T of natural numbers such that 0 ∈ T, and whenever n ∈ T,
then n + 3 ∈ T, but T �= S, where S is the set defined in definition 1.1.2.

1.1.2 Defining Sets Using Grammars

The previous examples have been fairly straightforward, but it is easy to
imagine how the process of describing more complex data types becomes
quite cumbersome. To help with this, we show how to specify sets with
grammars. Grammars are typically used to specify sets of strings, but we can
use them to define sets of values as well.

For example, we can define the set List-of-Int by the grammar

List-of-Int ::= ()

List-of-Int ::= (Int . List-of-Int)

Here we have two rules corresponding to the two properties in defini-
tion 1.1.4 above. The first rule says that the empty list is in List-of-Int, and
the second says that if n is in Int and l is in List-of-Int, then (n . l) is in
List-of-Int. This set of rules is called a grammar.

Let us look at the pieces of this definition. In this definition we have

• Nonterminal Symbols. These are the names of the sets being defined. In
this case there is only one such set, but in general, there might be several
sets being defined. These sets are sometimes called syntactic categories.

We will use the convention that nonterminals and sets have names that
are capitalized, but we will use lower-case names when referring to their
elements in prose. This is simpler than it sounds. For example, Expression
is a nonterminal, but we will write e ∈ Expression or “e is an expression.”

Another common convention, called Backus-Naur Form or BNF, is to sur-
round the word with angle brackets, e.g. 〈expression〉.

• Terminal Symbols. These are the characters in the external representa-
tion, in this case ., (, and). We typically write these using a typewriter
font, e.g. lambda.

1.1 Recursively Specified Data 7

• Productions. The rules are called productions. Each production has a left-
hand side, which is a nonterminal symbol, and a right-hand side, which
consists of terminal and nonterminal symbols. The left- and right-hand
sides are usually separated by the symbol ::=, read is or can be. The right-
hand side specifies a method for constructing members of the syntactic
category in terms of other syntactic categories and terminal symbols, such
as the left parenthesis, right parenthesis, and the period.

Often some syntactic categories mentioned in a production are left unde-
fined when their meaning is sufficiently clear from context, such as Int.

Grammars are often written using some notational shortcuts. It is common
to omit the left-hand side of a production when it is the same as the left-hand
side of the preceding production. Using this convention our example would
be written as

List-of-Int ::= ()

::= (Int . List-of-Int)

One can also write a set of rules for a single syntactic category by writ-
ing the left-hand side and ::= just once, followed by all the right-hand sides
separated by the special symbol “ |” (vertical bar, read or). The grammar for
List-of-Int could be written using “ |” as

List-of-Int ::= () | (Int . List-of-Int)

Another shortcut is the Kleene star, expressed by the notation {. . .}∗. When
this appears in a right-hand side, it indicates a sequence of any number of
instances of whatever appears between the braces. Using the Kleene star, the
definition of List-of-Int is simply

List-of-Int ::= ({Int}∗)

This includes the possibility of no instances at all. If there are zero instances,
we get the empty string.

A variant of the star notation is Kleene plus {. . .}+, which indicates a
sequence of one or more instances. Substituting + for ∗ in the example above
would define the syntactic category of non-empty lists of integers.

Still another variant of the star notation is the separated list notation. For
example, we write {Int}∗(c) to denote a sequence of any number of instances
of the nonterminal Int, separated by the non-empty character sequence c.
This includes the possibility of no instances at all. If there are zero instances,
we get the empty string. For example, {Int}∗(,) includes the strings

8 1 Inductive Sets of Data

8
14, 12
7, 3, 14, 16

and {Int}∗(;) includes the strings

8
14; 12
7; 3; 14; 16

These notational shortcuts are not essential. It is always possible to rewrite
the grammar without them.

If a set is specified by a grammar, a syntactic derivation may be used to show
that a given data value is a member of the set. Such a derivation starts with
the nonterminal corresponding to the set. At each step, indicated by an arrow
⇒, a nonterminal is replaced by the right-hand side of a corresponding rule,
or with a known member of its syntactic class if the class was left undefined.
For example, the previous demonstration that (14 . ()) is a list of integers
may be formalized with the syntactic derivation

List-of-Int
⇒ (Int . List-of-Int)
⇒ (14 . List-of-Int)
⇒ (14 . ())

The order in which nonterminals are replaced does not matter. Thus, here
is another derivation of (14 . ()).

List-of-Int
⇒ (Int . List-of-Int)
⇒ (Int . ())
⇒ (14 . ())

Exercise 1.4 [�] Write a derivation from List-of-Int to (-7 . (3 . (14 . ()))).

Let us consider the definitions of some other useful sets.

1. Many symbol manipulation procedures are designed to operate on lists
that contain only symbols and other similarly restricted lists. We call these
lists s-lists, defined as follows:

Definition 1.1.6 (s-list, s-exp)

S-list ::= ({S-exp}∗)
S-exp ::= Symbol | S-list

1.1 Recursively Specified Data 9

An s-list is a list of s-exps, and an s-exp is either an s-list or a symbol. Here
are some s-lists.

(a b c)
(an (((s-list)) (with () lots) ((of) nesting)))

We may occasionally use an expanded definition of s-list with integers
allowed, as well as symbols.

2. A binary tree with numeric leaves and interior nodes labeled with sym-
bols may be represented using three-element lists for the interior nodes
by the grammar:

Definition 1.1.7 (binary tree)

Bintree ::= Int | (Symbol Bintree Bintree)

Here are some examples of such trees:

1
2
(foo 1 2)
(bar 1 (foo 1 2))
(baz

(bar 1 (foo 1 2))
(biz 4 5))

3. The lambda calculus is a simple language that is often used to study the
theory of programming languages. This language consists only of vari-
able references, procedures that take a single argument, and procedure
calls. We can define it with the grammar:

Definition 1.1.8 (lambda expression)

LcExp ::= Identifier
::= (lambda (Identifier) LcExp)
::= (LcExp LcExp)

where an identifier is any symbol other than lambda.

10 1 Inductive Sets of Data

The identifier in the second production is the name of a variable in the
body of the lambda expression. This variable is called the bound variable
of the expression, because it binds or captures any occurrences of the vari-
able in the body. Any occurrence of that variable in the body refers to this
one.

To see how this works, consider the lambda calculus extended with arith-
metic operators. In that language,

(lambda (x) (+ x 5))

is an expression in which x is the bound variable. This expression
describes a procedure that adds 5 to its argument. Therefore, in

((lambda (x) (+ x 5)) (- x 7))

the last occurrence of x does not refer to the x that is bound in the
lambda expression. We discuss this in section 1.2.4, where we introduce
occurs-free?.

This grammar defines the elements of LcExp as Scheme values, so it
becomes easy to write programs that manipulate them.

These grammars are said to be context-free because a rule defining a given
syntactic category may be applied in any context that makes reference to that
syntactic category. Sometimes this is not restrictive enough. Consider binary
search trees. A node in a binary search tree is either empty or contains an
integer and two subtrees

Binary-search-tree ::= () | (Int Binary-search-tree Binary-search-tree)

This correctly describes the structure of each node but ignores an important
fact about binary search trees: all the keys in the left subtree are less than (or
equal to) the key in the current node, and all the keys in the right subtree are
greater than the key in the current node.

Because of this additional constraint, not every syntactic derivation from
Binary-search-tree leads to a correct binary search tree. To determine whether
a particular production can be applied in a particular syntactic derivation,
we have to look at the context in which the production is applied. Such
constraints are called context-sensitive constraints or invariants.

1.1 Recursively Specified Data 11

Context-sensitive constraints also arise when specifying the syntax of pro-
gramming languages. For instance, in many languages every variable must
be declared before it is used. This constraint on the use of variables is sen-
sitive to the context of their use. Formal methods can be used to specify
context-sensitive constraints, but these methods are far more complicated
than the ones we consider in this chapter. In practice, the usual approach
is first to specify a context-free grammar. Context-sensitive constraints are
then added using other methods. We show an example of such techniques
in chapter 7.

1.1.3 Induction

Having described sets inductively, we can use the inductive definitions in
two ways: to prove theorems about members of the set and to write pro-
grams that manipulate them. Here we present an example of such a proof;
writing the programs is the subject of the next section.

Theorem 1.1.1 Let t be a binary tree, as defined in definition 1.1.7. Then t contains
an odd number of nodes.

Proof: The proof is by induction on the size of t, where we take the size of
t to be the number of nodes in t. The induction hypothesis, IH(k), is that any
tree of size ≤ k has an odd number of nodes. We follow the usual prescription
for an inductive proof: we first prove that IH(0) is true, and we then prove
that whenever k is an integer such that IH is true for k, then IH is true for
k + 1 also.

1. There are no trees with 0 nodes, so IH(0) holds trivially.

2. Let k be an integer such that IH(k) holds, that is, any tree with ≤ k nodes
actually has an odd number of nodes. We need to show that IH(k + 1)
holds as well: that any tree with ≤ k + 1 nodes has an odd number of
nodes. If t has ≤ k + 1 nodes, there are exactly two possibilities according
to the definition of a binary tree:

(a) t could be of the form n, where n is an integer. In this case, t has exactly
one node, and one is odd.

(b) t could be of the form (sym t1 t2), where sym is a symbol and t1 and
t2 are trees. Now t1 and t2 must have fewer nodes than t. Since t has ≤
k + 1 nodes, t1 and t2 must have ≤ k nodes. Therefore they are covered

12 1 Inductive Sets of Data

by IH(k), and they must each have an odd number of nodes, say 2n1 + 1
and 2n2 + 1 nodes, respectively. Hence the total number of nodes in the
tree, counting the two subtrees and the root, is

(2n1 + 1) + (2n2 + 1) + 1 = 2(n1 + n2 + 1) + 1

which is once again odd.

This completes the proof of the claim that IH(k + 1) holds and therefore
completes the induction.

The key to the proof is that the substructures of a tree t are always smaller
than t itself. This pattern of proof is called structural induction.

Proof by Structural Induction

To prove that a proposition IH(s) is true for all structures s, prove the follow-
ing:

1. IH is true on simple structures (those without substructures).

2. If IH is true on the substructures of s, then it is true on s itself.

Exercise 1.5 [� �] Prove that if e ∈ LcExp, then there are the same number of left and
right parentheses in e.

1.2 Deriving Recursive Programs

We have used the method of inductive definition to characterize complicated
sets. We have seen that we can analyze an element of an inductively defined
set to see how it is built from smaller elements of the set. We have used this
idea to write a procedure in-S? to decide whether a natural number is in
the set S. We now use the same idea to define more general procedures that
compute on inductively defined sets.

Recursive procedures rely on an important principle:

The Smaller-Subproblem Principle

If we can reduce a problem to a smaller subproblem, we can call the procedure
that solves the problem to solve the subproblem.

1.2 Deriving Recursive Programs 13

The solution returned for the subproblem may then be used to solve the orig-
inal problem. This works because each time we call the procedure, it is called
with a smaller problem, until eventually it is called with a problem that can
be solved directly, without another call to itself.

We illustrate this idea with a sequence of examples.

1.2.1 list-length

The standard Scheme procedure length determines the number of elements
in a list.

> (length ’(a b c))
3
> (length ’((x) ()))
2

Let us write our own procedure, called list-length, that does the same
thing.

We begin by writing down the contract for the procedure. The contract
specifies the sets of possible arguments and possible return values for the
procedure. The contract also may include the intended usage or behavior of
the procedure. This helps us keep track of our intentions both as we write
and afterwards. In code, this would be a comment; we typeset it for read-
ability.

list-length : List → Int
usage: (list-length l) = the length of l
(define list-length

(lambda (lst)
...))

We can define the set of lists by

List ::= () | (Scheme value . List)

Therefore we consider each possibility for a list. If the list is empty, then
its length is 0.

list-length : List → Int
usage: (list-length l) = the length of l
(define list-length

(lambda (lst)
(if (null? lst)
0
...)))

14 1 Inductive Sets of Data

If a list is non-empty, then its length is one more than the length of its cdr.
This gives us a complete definition.

list-length : List → Int
usage: (list-length l) = the length of l
(define list-length

(lambda (lst)
(if (null? lst)

0
(+ 1 (list-length (cdr lst))))))

We can watch list-length compute by using its definition.

(list-length ’(a (b c) d))
= (+ 1 (list-length ’((b c) d)))
= (+ 1 (+ 1 (list-length ’(d))))
= (+ 1 (+ 1 (+ 1 (list-length ’()))))
= (+ 1 (+ 1 (+ 1 0)))
= 3

1.2.2 nth-element

The standard Scheme procedure list-ref takes a list lst and a zero-based
index n and returns element number n of lst.

> (list-ref ’(a b c) 1)
b

Let us write our own procedure, called nth-element, that does the same
thing.

Again we use the definition of List above.
What should (nth-element lst n) return when lst is empty? In this

case, (nth-element lst n) is asking for an element of an empty list, so we
report an error.

What should (nth-element lst n) return when lst is non-empty? The
answer depends on n. If n = 0, the answer is simply the car of lst.

What should (nth-element lst n) return when lst is non-empty and
n �= 0? In this case, the answer is the (n− 1)-st element of the cdr of lst. Since
n ∈ N and n �= 0 , we know that n − 1 must also be in N, so we can find the
(n− 1)-st element by recursively calling nth-element.

1.2 Deriving Recursive Programs 15

This leads us to the definition

nth-element : List × Int → SchemeVal
usage: (nth-element lst n) = the n-th element of lst
(define nth-element

(lambda (lst n)
(if (null? lst)
(report-list-too-short n)
(if (zero? n)

(car lst)
(nth-element (cdr lst) (- n 1))))))

(define report-list-too-short
(lambda (n)

(eopl:error ’nth-element
"List too short by ~s elements.~%" (+ n 1))))

Here the notation nth-element : List× Int→SchemeVal means that nth-
element is a procedure that takes two arguments, a list and an integer, and
returns a Scheme value. This is the same notation that is used in mathemat-
ics when we write f : A × B → C.

The procedure report-list-too-short reports an error condition by
calling eopl:error. The procedure eopl:error aborts the computation.
Its first argument is a symbol that allows the error message to identify the
procedure that called eopl:error. The second argument is a string that is
then printed in the error message. There must then be an additional argu-
ment for each instance of the character sequence ~s in the string. The values
of these arguments are printed in place of the corresponding ~s when the
string is printed. A ~% is treated as a new line. After the error message
is printed, the computation is aborted. This procedure eopl:error is not
part of standard Scheme, but most implementations of Scheme provide such
a facility. We use procedures named report- to report errors in a similar
fashion throughout the book.

Watch how nth-element computes its answer:

(nth-element ’(a b c d e) 3)
= (nth-element ’(b c d e) 2)
= (nth-element ’(c d e) 1)
= (nth-element ’(d e) 0)
= d

Here nth-element recurs on shorter and shorter lists, and on smaller and
smaller numbers.

16 1 Inductive Sets of Data

If error checking were omitted, we would have to rely on car and cdr to
complain about being passed the empty list, but their error messages would
be less helpful. For example, if we received an error message from car, we
might have to look for uses of car throughout our program.

Exercise 1.6 [�] If we reversed the order of the tests in nth-element, what would
go wrong?

Exercise 1.7 [� �] The error message from nth-element is uninformative. Rewrite
nth-element so that it produces a more informative error message, such as “(a b
c) does not have 8 elements.”

1.2.3 remove-first

The procedure remove-first should take two arguments: a symbol, s, and
a list of symbols, los. It should return a list with the same elements arranged
in the same order as los, except that the first occurrence of the symbol s is
removed. If there is no occurrence of s in los, then los is returned.

> (remove-first ’a ’(a b c))
(b c)
> (remove-first ’b ’(e f g))
(e f g)
> (remove-first ’a4 ’(c1 a4 c1 a4))
(c1 c1 a4)
> (remove-first ’x ’())
()

Before we start writing the definition of this procedure, we must complete
the problem specification by defining the set List-of-Symbol of lists of symbols.
Unlike the s-lists introduced in the last section, these lists of symbols do not
contain sublists.

List-of-Symbol ::= () | (Symbol . List-of-Symbol)

A list of symbols is either the empty list or a list whose car is a symbol and
whose cdr is a list of symbols.

1.2 Deriving Recursive Programs 17

If the list is empty, there are no occurrences of s to remove, so the answer
is the empty list.

remove-first : Sym × Listof(Sym) → Listof(Sym)
usage: (remove-first s los) returns a list with

the same elements arranged in the same
order as los, except that the first
occurrence of the symbol s is removed.

(define remove-first
(lambda (s los)

(if (null? los)
’()
...)))

Here we have written the contract with Listof(Sym) instead of List-of-Symbol.
This notation will allow us to avoid many definitions like the ones above.

If los is non-empty, is there some case where we can determine the answer
immediately? If the first element of los is s, say los = (s s1 . . . sn−1), the first
occurrence of s is as the first element of los. So the result of removing it is just
(s1 . . . sn−1).

remove-first : Sym × Listof(Sym) → Listof(Sym)
(define remove-first

(lambda (s los)
(if (null? los)
’()
(if (eqv? (car los) s)

(cdr los)
...))))

If the first element of los is not s, say los = (s0 s1 . . . sn−1), then we know that
s0 is not the first occurrence of s. Therefore the first element of the answer
must be s0, which is the value of the expression (car los). Furthermore,
the first occurrence of s in los must be its first occurrence in (s1 . . . sn−1). So
the rest of the answer must be the result of removing the first occurrence of
s from the cdr of los. Since the cdr of los is shorter than los, we may recur-
sively call remove-first to remove s from the cdr of los. So the cdr of the
answer can be obtained as the value of (remove-first s (cdr los)).
Since we know how to find the car and cdr of the answer, we can find the
whole answer by combining them with cons, using the expression (cons
(car los) (remove-first s (cdr los))). With this, the complete
definition of remove-first becomes

18 1 Inductive Sets of Data

remove-first : Sym × Listof(Sym) → Listof(Sym)
(define remove-first

(lambda (s los)
(if (null? los)

’()
(if (eqv? (car los) s)

(cdr los)
(cons (car los) (remove-first s (cdr los)))))))

Exercise 1.8 [�] In the definition of remove-first, if the last line were replaced
by (remove-first s (cdr los)), what function would the resulting procedure
compute? Give the contract, including the usage statement, for the revised procedure.

Exercise 1.9 [� �] Define remove, which is like remove-first, except that it
removes all occurrences of a given symbol from a list of symbols, not just the first.

1.2.4 occurs-free?

The procedure occurs-free? should take a variable var, represented as a
Scheme symbol, and a lambda-calculus expression exp as defined in defini-
tion 1.1.8, and determine whether or not var occurs free in exp. We say that a
variable occurs free in an expression exp if it has some occurrence in exp that
is not inside some lambda binding of the same variable. For example,

> (occurs-free? ’x ’x)
#t
> (occurs-free? ’x ’y)
#f
> (occurs-free? ’x ’(lambda (x) (x y)))
#f
> (occurs-free? ’x ’(lambda (y) (x y)))
#t
> (occurs-free? ’x ’((lambda (x) x) (x y)))
#t
> (occurs-free? ’x ’(lambda (y) (lambda (z) (x (y z)))))
#t

We can solve this problem by following the grammar for lambda-calculus
expressions

LcExp ::= Identifier
::= (lambda (Identifier) LcExp)
::= (LcExp LcExp)

1.2 Deriving Recursive Programs 19

We can summarize these cases in the rules:

• If the expression e is a variable, then the variable x occurs free in e if
and only if x is the same as e.

• If the expression e is of the form (lambda (y) e′), then the vari-
able x occurs free in e if and only if y is different from x and x occurs
free in e′.

• If the expression e is of the form (e1 e2), then x occurs free in e if
and only if it occurs free in e1 or e2. Here, we use “or” to mean
inclusive or, meaning that this includes the possibility that x occurs
free in both e1 and e2. We will generally use “or” in this sense.

You should convince yourself that these rules capture the notion of occurring
“not inside a lambda-binding of x.”

Exercise 1.10 [�] We typically use “or” to mean “inclusive or.” What other meanings
can “or” have?

Then it is easy to define occurs-free?. Since there are three alternatives
to be checked, we use a Scheme cond rather than an if. In Scheme, (or
exp1 exp2) returns a true value if either exp1 or exp2 returns a true value.

occurs-free? : Sym × LcExp → Bool
usage: returns #t if the symbol var occurs free

in exp, otherwise returns #f.
(define occurs-free?

(lambda (var exp)
(cond
((symbol? exp) (eqv? var exp))
((eqv? (car exp) ’lambda)
(and

(not (eqv? var (car (cadr exp))))
(occurs-free? var (caddr exp))))

(else
(or

(occurs-free? var (car exp))
(occurs-free? var (cadr exp)))))))

This procedure is not as readable as it might be. It is hard to tell, for
example, that (car (cadr exp)) refers to the declaration of a variable
in a lambda expression, or that (caddr exp) refers to its body. We show
how to improve this situation considerably in section 2.5.

20 1 Inductive Sets of Data

1.2.5 subst

The procedure subst should take three arguments: two symbols, new and
old, and an s-list, slist. All elements of slist are examined, and a
new list is returned that is similar to slist but with all occurrences of old
replaced by instances of new.

> (subst ’a ’b ’((b c) (b () d)))
((a c) (a () d))

Since subst is defined over s-lists, its organization should reflect the defini-
tion of s-lists (definition 1.1.6)

S-list ::= ({S-exp}∗)
S-exp ::= Symbol | S-list

The Kleene star gives a concise description of the set of s-lists, but it is
not so helpful for writing programs. Therefore our first step is to rewrite
the grammar to eliminate the use of the Kleene star. The resulting grammar
suggests that our procedure should recur on the car and cdr of an s-list.

S-list ::= ()

::= (S-exp . S-list)
S-exp ::= Symbol | S-list

This example is more complex than our previous ones because the gram-
mar for its input contains two nonterminals, S-list and S-exp. Therefore we
will have two procedures, one for dealing with S-list and one for dealing
with S-exp:

subst : Sym × Sym × S-list → S-list
(define subst

(lambda (new old slist)
...))

subst-in-s-exp : Sym × Sym × S-exp → S-exp
(define subst-in-s-exp

(lambda (new old sexp)
...))

1.2 Deriving Recursive Programs 21

Let us first work on subst. If the list is empty, there are no occurrences of
old to replace.

subst : Sym × Sym × S-list → S-list
(define subst

(lambda (new old slist)
(if (null? slist)
’()
...)))

If slist is non-empty, its car is a member of S-exp and its cdr is another s-list.
In this case, the answer should be a list whose car is the result of changing
old to new in the car of slist, and whose cdr is the result of changing old
to new in the cdr of slist. Since the car of slist is an element of S-exp, we
solve the subproblem for the car using subst-in-s-exp. Since the cdr of
slist is an element of S-list, we recur on the cdr using subst:

subst : Sym × Sym × S-list → S-list
(define subst

(lambda (new old slist)
(if (null? slist)
’()
(cons

(subst-in-s-exp new old (car slist))
(subst new old (cdr slist))))))

Now we can move on to subst-in-s-exp. From the grammar, we know
that the symbol expression sexp is either a symbol or an s-list. If it is a
symbol, we need to ask whether it is the same as the symbol old. If it is, the
answer is new; if it is some other symbol, the answer is the same as sexp. If
sexp is an s-list, then we can recur using subst to find the answer.

subst-in-s-exp : Sym × Sym × S-exp → S-exp
(define subst-in-s-exp

(lambda (new old sexp)
(if (symbol? sexp)
(if (eqv? sexp old) new sexp)
(subst new old sexp))))

Since we have strictly followed the definition of S-list and S-exp, this recur-
sion is guaranteed to halt. Since subst and subst-in-s-exp call each
other recursively, we say they are mutually recursive.

The decomposition of subst into two procedures, one for each syntactic
category, is an important technique. It allows us to think about one syn-
tactic category at a time, which greatly simplifies our thinking about more
complicated programs.

22 1 Inductive Sets of Data

Exercise 1.11 [�] In the last line of subst-in-s-exp, the recursion is on sexp and
not a smaller substructure. Why is the recursion guaranteed to halt?

Exercise 1.12 [�] Eliminate the one call to subst-in-s-exp in subst by replacing it
by its definition and simplifying the resulting procedure. The result will be a version
of subst that does not need subst-in-s-exp. This technique is called inlining, and
is used by optimizing compilers.

Exercise 1.13 [� �] In our example, we began by eliminating the Kleene star in the
grammar for S-list. Write subst following the original grammar by using map.

We’ve now developed a recipe for writing procedures that operate on
inductively defined data sets. We summarize it as a slogan.

Follow the Grammar!

When defining a procedure that operates on inductively defined data, the
structure of the program should be patterned after the structure of the data.

More precisely:

• Write one procedure for each nonterminal in the grammar. The procedure
will be responsible for handling the data corresponding to that nontermi-
nal, and nothing else.

• In each procedure, write one alternative for each production correspond-
ing to that nonterminal. You may need additional case structure, but this
will get you started. For each nonterminal that appears in the right-hand
side, write a recursive call to the procedure for that nonterminal.

1.3 Auxiliary Procedures and Context Arguments

The Follow-the-Grammar recipe is powerful, but sometimes it is not suffi-
cient. Consider the procedure number-elements. This procedure should
take any list (v0 v1 v2 ...) and return the list ((0 v0) (1 v1) (2 v2)
...).

A straightforward decomposition of the kind we’ve used so far does not
solve this problem, because there is no obvious way to build the value of
(number-elements lst) from the value of (number-elements (cdr
lst)) (but see exercise 1.36).

To solve this problem, we need to generalize the problem. We write a new
procedure number-elements-from that takes an additional argument n

1.3 Auxiliary Procedures and Context Arguments 23

that specifies the number to start from. This procedure is easy to write, by
recursion on the list.

number-elements-from : Listof(SchemeVal) × Int → Listof(List(Int, SchemeVal))

usage: (number-elements-from ’(v0 v1 v2 ...) n)
= ((n v0) (n + 1 v1) (n + 2 v2) ...)

(define number-elements-from
(lambda (lst n)

(if (null? lst) ’()
(cons

(list n (car lst))
(number-elements-from (cdr lst) (+ n 1))))))

Here the contract header tells us that this procedure takes two arguments,
a list (containing any Scheme values) and an integer, and returns a list of
things, each of which is a list consisting of two elements: an integer and a
Scheme value.

Once we have defined number-elements-from, it’s easy to write the
desired procedure.

number-elements : List → Listof(List(Int, SchemeVal))
(define number-elements

(lambda (lst)
(number-elements-from lst 0)))

There are two important observations to be made here. First, the proce-
dure number-elements-from has a specification that is independent of the
specification of number-elements. It’s very common for a programmer
to write a procedure that simply calls some auxiliary procedure with some
additional constant arguments. Unless we can understand what that auxil-
iary procedure does for every value of its arguments, then we can’t possibly
understand what the calling procedure does. This gives us a slogan:

No Mysterious Auxiliaries!

When defining an auxiliary procedure, always specify what it does on all
arguments, not just the initial values.

Second, the two arguments to number-elements-from play two differ-
ent roles. The first argument is the list we are working on. It gets smaller
at every recursive call. The second argument, however, is an abstraction

24 1 Inductive Sets of Data

of the context in which we are working. In this example, when we call
number-elements, we end up calling number-elements-from on each
sublist of the original list. The second argument tells us the position of the
sublist in the original list. This need not decrease at a recursive call; indeed it
grows, because we are passing over another element of the original list. We
sometimes call this a context argument or inherited attribute.

As another example, consider the problem of summing all the values in a
vector.

If we were summing the values in a list, we could follow the grammar to
recur on the cdr of the list. This would get us a procedure like

list-sum : Listof(Int) → Int
(define list-sum

(lambda (loi)
(if (null? loi)

0
(+ (car loi)

(list-sum (cdr loi))))))

But it is not possible to proceed in this way with vectors, because they do not
decompose as readily.

Since we cannot decompose vectors, we generalize the problem to com-
pute the sum of part of the vector. The specification of our problem is to
compute

i=length(v)−1

∑
i=0

vi

where v is a vector of integers. We generalize it by turning the upper bound
into a parameter n, so that the new task is to compute

i=n

∑
i=0

vi

where 0 ≤ n < length(v).
This procedure is straightforward to write from its specification, using

induction on its second argument n.

1.4 Exercises 25

partial-vector-sum : Vectorof(Int) × Int → Int
usage: if 0 ≤ n < length(v), then

(partial-vector-sum v n) =
i=n

∑
i=0

vi

(define partial-vector-sum
(lambda (v n)

(if (zero? n)
(vector-ref v 0)
(+ (vector-ref v n)

(partial-vector-sum v (- n 1))))))

Since n decreases steadily to zero, a proof of correctness for this pro-
gram would proceed by induction on n. Because 0 ≤ n and n �= 0, we
can deduce that 0 ≤ (n − 1), so that the recursive call to the procedure
partial-vector-sum satisfies its contract.

It is now a simple matter to solve our original problem. The procedure
partial-vector-sum doesn’t apply if the vector is of length 0, so we need
to handle that case separately.

vector-sum : Vectorof(Int) → Int

usage: (vector-sum v) =
i=length(v)−1

∑
i=0

vi

(define vector-sum
(lambda (v)

(let ((n (vector-length v)))
(if (zero? n)

0
(partial-vector-sum v (- n 1))))))

There are many other situations in which it may be helpful or necessary
to introduce auxiliary variables or procedures to solve a problem. Always
feel free to do so, provided that you can give an independent specification of
what the new procedure is intended to do.

Exercise 1.14 [� �] Given the assumption 0 ≤ n < length(v), prove that partial-
vector-sum is correct.

1.4 Exercises

Getting the knack of writing recursive programs involves practice. Thus we
conclude this chapter with a sequence of exercises.

In each of these exercises, assume that s is a symbol, n is a nonnegative
integer, lst is a list, loi is a list of integers, los is a list of symbols, slist

26 1 Inductive Sets of Data

is an s-list, and x is any Scheme value; and similarly s1 is a symbol, los2 is
a list of symbols, x1 is a Scheme value, etc. Also assume that pred is a pred-
icate, that is, a procedure that takes any Scheme value and always returns
either #t or #f. Make no other assumptions about the data unless further
restrictions are given as part of a particular problem. For these exercises,
there is no need to check that the input matches the description; for each
procedure, assume that its input values are members of the specified sets.

Define, test, and debug each procedure. Your definition should include a
contract and usage comment in the style we have used in this chapter. Feel
free to define auxiliary procedures, but each auxiliary procedure you define
should have its own specification, as in section 1.3.

To test these procedures, first try all the given examples. Then use other
examples to test these procedures, since the given examples are not adequate
to reveal all possible errors.

Exercise 1.15 [�] (duple n x) returns a list containing n copies of x.

> (duple 2 3)
(3 3)
> (duple 4 ’(ha ha))
((ha ha) (ha ha) (ha ha) (ha ha))
> (duple 0 ’(blah))
()

Exercise 1.16 [�] (invert lst), where lst is a list of 2-lists (lists of length two),
returns a list with each 2-list reversed.

> (invert ’((a 1) (a 2) (1 b) (2 b)))
((1 a) (2 a) (b 1) (b 2))

Exercise 1.17 [�] (down lst) wraps parentheses around each top-level element of
lst.

> (down ’(1 2 3))
((1) (2) (3))
> (down ’((a) (fine) (idea)))
(((a)) ((fine)) ((idea)))
> (down ’(a (more (complicated)) object))
((a) ((more (complicated))) (object))

1.4 Exercises 27

Exercise 1.18 [�] (swapper s1 s2 slist) returns a list the same as slist, but
with all occurrences of s1 replaced by s2 and all occurrences of s2 replaced by s1.

> (swapper ’a ’d ’(a b c d))
(d b c a)
> (swapper ’a ’d ’(a d () c d))
(d a () c a)
> (swapper ’x ’y ’((x) y (z (x))))
((y) x (z (y)))

Exercise 1.19 [� �] (list-set lst n x) returns a list likelst, except that the n-th
element, using zero-based indexing, is x.

> (list-set ’(a b c d) 2 ’(1 2))
(a b (1 2) d)
> (list-ref (list-set ’(a b c d) 3 ’(1 5 10)) 3)
(1 5 10)

Exercise 1.20 [�] (count-occurrences s slist) returns the number of occur-
rences of s in slist.

> (count-occurrences ’x ’((f x) y (((x z) x))))
3
> (count-occurrences ’x ’((f x) y (((x z) () x))))
3
> (count-occurrences ’w ’((f x) y (((x z) x))))
0

Exercise 1.21 [� �] (product sos1 sos2), where sos1 and sos2 are each a list
of symbols without repetitions, returns a list of 2-lists that represents the Cartesian
product of sos1 and sos2. The 2-lists may appear in any order.

> (product ’(a b c) ’(x y))
((a x) (a y) (b x) (b y) (c x) (c y))

Exercise 1.22 [� �] (filter-in pred lst) returns the list of those elements in
lst that satisfy the predicate pred.

> (filter-in number? ’(a 2 (1 3) b 7))
(2 7)
> (filter-in symbol? ’(a (b c) 17 foo))
(a foo)

Exercise 1.23 [� �] (list-index pred lst) returns the 0-based position of the
first element of lst that satisfies the predicate pred. If no element of lst satisfies
the predicate, then list-index returns #f.

> (list-index number? ’(a 2 (1 3) b 7))
1
> (list-index symbol? ’(a (b c) 17 foo))
0
> (list-index symbol? ’(1 2 (a b) 3))
#f

28 1 Inductive Sets of Data

Exercise 1.24 [� �] (every? pred lst) returns #f if any element of lst fails to
satisfy pred, and returns #t otherwise.

> (every? number? ’(a b c 3 e))
#f
> (every? number? ’(1 2 3 5 4))
#t

Exercise 1.25 [� �] (exists? pred lst) returns #t if any element of lst satisfies
pred, and returns #f otherwise.

> (exists? number? ’(a b c 3 e))
#t
> (exists? number? ’(a b c d e))
#f

Exercise 1.26 [� �] (up lst) removes a pair of parentheses from each top-level ele-
ment of lst. If a top-level element is not a list, it is included in the result, as is.
The value of (up (down lst)) is equivalent to lst, but (down (up lst)) is
not necessarily lst. (See exercise 1.17.)

> (up ’((1 2) (3 4)))
(1 2 3 4)
> (up ’((x (y)) z))
(x (y) z)

Exercise 1.27 [� �] (flatten slist) returns a list of the symbols contained in
slist in the order in which they occur when slist is printed. Intuitively, flatten
removes all the inner parentheses from its argument.

> (flatten ’(a b c))
(a b c)
> (flatten ’((a) () (b ()) () (c)))
(a b c)
> (flatten ’((a b) c (((d)) e)))
(a b c d e)
> (flatten ’(a b (() (c))))
(a b c)

Exercise 1.28 [� �] (merge loi1 loi2), where loi1 and loi2 are lists of integers
that are sorted in ascending order, returns a sorted list of all the integers in loi1 and
loi2.

> (merge ’(1 4) ’(1 2 8))
(1 1 2 4 8)
> (merge ’(35 62 81 90 91) ’(3 83 85 90))
(3 35 62 81 83 85 90 90 91)

1.4 Exercises 29

Exercise 1.29 [� �] (sort loi) returns a list of the elements of loi in ascending
order.

> (sort ’(8 2 5 2 3))
(2 2 3 5 8)

Exercise 1.30 [� �] (sort/predicate pred loi) returns a list of elements sorted
by the predicate.

> (sort/predicate < ’(8 2 5 2 3))
(2 2 3 5 8)
> (sort/predicate > ’(8 2 5 2 3))
(8 5 3 2 2)

Exercise 1.31 [�] Write the following procedures for calculating on a bintree (defi-
nition 1.1.7): leaf and interior-node, which build bintrees, leaf?, which tests
whether a bintree is a leaf, and lson, rson, and contents-of, which extract the
components of a node. contents-of should work on both leaves and interior
nodes.

Exercise 1.32 [�] Write a proceduredouble-tree that takes a bintree, as represented
in definition 1.1.7, and produces another bintree like the original, but with all the
integers in the leaves doubled.

Exercise 1.33 [� �] Write a procedure mark-leaves-with-red-depth that takes a
bintree (definition 1.1.7), and produces a bintree of the same shape as the original,
except that in the new tree, each leaf contains the integer of nodes between it and the
root that contain the symbol red. For example, the expression

(mark-leaves-with-red-depth
(interior-node ’red

(interior-node ’bar
(leaf 26)
(leaf 12))

(interior-node ’red
(leaf 11)
(interior-node ’quux

(leaf 117)
(leaf 14))

which is written using the procedures defined in exercise 1.31, should return the bin-
tree

(red
(bar 1 1)
(red 2 (quux 2 2)))

30 1 Inductive Sets of Data

Exercise 1.34 [� � �] Write a procedure path that takes an integer n and a binary
search tree bst (page 10) that contains the integer n, and returns a list of lefts and
rights showing how to find the node containing n. If n is found at the root, it returns
the empty list.

> (path 17 ’(14 (7 () (12 () ()))
(26 (20 (17 () ())

())
(31 () ()))))

(right left left)

Exercise 1.35 [� � �] Write a procedure number-leaves that takes a bintree, and
produces a bintree like the original, except the contents of the leaves are numbered
starting from 0. For example,

(number-leaves
(interior-node ’foo
(interior-node ’bar

(leaf 26)
(leaf 12))

(interior-node ’baz
(leaf 11)
(interior-node ’quux

(leaf 117)
(leaf 14))

should return

(foo
(bar 0 1)
(baz
2
(quux 3 4)))

Exercise 1.36 [� � �] Write a procedure g such that number-elements from page 23
could be defined as

(define number-elements
(lambda (lst)
(if (null? lst) ’()

(g (list 0 (car lst)) (number-elements (cdr lst))))))

2 Data Abstraction

2.1 Specifying Data via Interfaces

Every time we decide to represent a certain set of quantities in a particular
way, we are defining a new data type: the data type whose values are those
representations and whose operations are the procedures that manipulate
those entities.

The representation of these entities is often complex, so we do not want to
be concerned with their details when we can avoid them. We may also decide
to change the representation of the data. The most efficient representation is
often a lot more difficult to implement, so we may wish to develop a simple
implementation first and only change to a more efficient representation if
it proves critical to the overall performance of a system. If we decide to
change the representation of some data for any reason, we must be able to
locate all parts of a program that are dependent on the representation. This
is accomplished using the technique of data abstraction.

Data abstraction divides a data type into two pieces: an interface and an
implementation. The interface tells us what the data of the type represents,
what the operations on the data are, and what properties these operations
may be relied on to have. The implementation provides a specific represen-
tation of the data and code for the operations that make use of that data
representation.

A data type that is abstract in this way is said to be an abstract data type. The
rest of the program, the client of the data type, manipulates the new data only
through the operations specified in the interface. Thus if we wish to change
the representation of the data, all we must do is change the implementation
of the operations in the interface.

32 2 Data Abstraction

This is a familiar idea: when we write programs that manipulate files, most
of the time we care only that we can invoke procedures that perform the
open, close, read, and other typical operations on files. Similarly, most of the
time, we don’t care how integers are actually represented inside the machine.
Our only concern is that we can perform the arithmetic operations reliably.

When the client manipulates the values of the data type only through
the procedures in the interface, we say that the client code is representation-
independent, because then the code does not rely on the representation of the
values in the data type.

All the knowledge about how the data is represented must therefore reside
in the code of the implementation. The most important part of an implemen-
tation is the specification of how the data is represented. We use the notation
v� for “the representation of data v.”

To make this clearer, let us consider a simple example: the data type of
natural numbers. The data to be represented are the natural numbers. The
interface is to consist of four procedures: zero, is-zero?, successor, and
predecessor. Of course, not just any set of procedures will be acceptable
as an implementation of this interface. A set of procedures will be acceptable
as implementations of zero, is-zero?, successor, and predecessor
only if they satisfy the four equations

(zero) = 0�

(is-zero? n�) =

{
#t n = 0
#f n �= 0

(successor n�) = n + 1� (n ≥ 0)
(predecessor n + 1�) = n� (n ≥ 0)

This specification does not dictate how these natural numbers are to be
represented. It requires only that these procedures conspire to produce the
specified behavior. Thus, the procedure zero must return the representa-
tion of 0. The procedure successor, given the representation of the num-
ber n, must return the representation of the number n + 1, and so on. The
specification says nothing about (predecessor (zero)), so under this
specification any behavior would be acceptable.

2.1 Specifying Data via Interfaces 33

We can now write client programs that manipulate natural numbers, and
we are guaranteed that they will get correct answers, no matter what repre-
sentation is in use. For example,

(define plus
(lambda (x y)

(if (is-zero? x)
y
(successor (plus (predecessor x) y)))))

will satisfy (plus x� y�) = x + y�, no matter what implementation of
the natural numbers we use.

Most interfaces will contain some constructors that build elements of
the data type, and some observers that extract information from values of
the data type. Here we have three constructors, zero, successor, and
predecessor, and one observer, is-zero?.

There are many possible representations of this interface. Let us consider
three of them.

1. Unary representation: In the unary representation, the natural number n
is represented by a list of n #t’s. Thus, 0 is represented by (), 1 is rep-
resented by (#t), 2 is represented by (#t #t), etc. We can define this
representation inductively by:

0� = ()
n + 1� = (#t . n�)

In this representation, we can satisfy the specification by writing

(define zero (lambda () ’()))
(define is-zero? (lambda (n) (null? n)))
(define successor (lambda (n) (cons #t n)))
(define predecessor (lambda (n) (cdr n)))

2. Scheme number representation: In this representation, we simply use
Scheme’s internal representation of numbers (which might itself be quite
complicated!). We let n� be the Scheme integer n, and define the four
required entities by

(define zero (lambda () 0))
(define is-zero? (lambda (n) (zero? n)))
(define successor (lambda (n) (+ n 1)))
(define predecessor (lambda (n) (- n 1)))

34 2 Data Abstraction

3. Bignum representation: In the bignum representation, numbers are repre-
sented in base N, for some large integer N. The representation becomes
a list consisting of numbers between 0 and N − 1 (sometimes called bigits
rather than digits). This representation makes it easy to represent integers
that are much larger than can be represented in a machine word. For our
purposes, it is convenient to keep the list with least-significant bigit first.
We can define the representation inductively by

n� =

{
() n = 0
(r . q�) n = qN + r, 0 ≤ r < N

So if N = 16, then 33� = (1 2) and 258� = (2 0 1), since

258 = 2× 160
+ 0 × 161

+ 1 × 162

None of these implementations enforces data abstraction. There is nothing
to prevent a client program from looking at the representation and deter-
mining whether it is a list or a Scheme integer. On the other hand, some
languages provide direct support for data abstractions: they allow the pro-
grammer to create new interfaces and check that the new data is manipulated
only through the procedures in the interface. If the representation of a type
is hidden, so it cannot be exposed by any operation (including printing), the
type is said to be opaque. Otherwise, it is said to be transparent.

Scheme does not provide a standard mechanism for creating new opaque
types. Thus we settle for an intermediate level of abstraction: we define
interfaces and rely on the writer of the client program to be discreet and use
only the procedures in the interfaces.

In chapter 8, we discuss ways in which a language can enforce such proto-
cols.

Exercise 2.1 [�] Implement the four required operations for bigits. Then use your
implementation to calculate the factorial of 10. How does the execution time vary
as this argument changes? How does the execution time vary as the base changes?
Explain why.

Exercise 2.2 [� �] Analyze each of these proposed representations critically. To what
extent do they succeed or fail in satisfying the specification of the data type?

Exercise 2.3 [� �] Define a representation of all the integers (negative and nonnega-
tive) as diff-trees, where a diff-tree is a list defined by the grammar

Diff-tree ::= (one) | (diff Diff-tree Diff-tree)

2.2 Representation Strategies for Data Types 35

The list (one) represents 1. If t1 represents n1 and t2 represents n2, then
(diff t1 t2) is a representation of n1 − n2.

So both (one) and (diff (one) (diff (one) (one))) are representations of
1; (diff (diff (one) (one)) (one)) is a representation of −1.

1. Show that every number has infinitely many representations in this system.

2. Turn this representation of the integers into an implementation by writing zero,
is-zero?, successor, and predecessor, as specified on page 32, except that
now the negative integers are also represented. Your procedures should take as
input any of the multiple legal representations of an integer in this scheme. For
example, if your successor procedure is given any of the infinitely many legal
representations of 1, it should produce one of the legal representations of 2. It is
permissible for different legal representations of 1 to yield different legal repre-
sentations of 2.

3. Write a procedure diff-tree-plus that does addition in this representation.
Your procedure should be optimized for the diff-tree representation, and should
do its work in a constant amount of time (independent of the size of its inputs). In
particular, it should not be recursive.

2.2 Representation Strategies for Data Types

When data abstraction is used, programs have the property of representation
independence: programs are independent of the particular representation
used to implement an abstract data type. It is then possible to change the
representation by redefining the small number of procedures belonging to
the interface. We frequently rely on this property in later chapters.

In this section we introduce some strategies for representing data types.
We illustrate these choices using a data type of environments. An environment
associates a value with each element of a finite set of variables. An environ-
ment may be used to associate variables with their values in a programming
language implementation. A compiler may also use an environment to asso-
ciate each variable name with information about that variable.

Variables may be represented in any way we please, so long as we can
check two variables for equality. We choose to represent variables using
Scheme symbols, but in a language without a symbol data type, variables
could be represented by strings, by references into a hash table, or even by
numbers (see section 3.6).

36 2 Data Abstraction

2.2.1 The Environment Interface

An environment is a function whose domain is a finite set of variables, and
whose range is the set of all Scheme values. Since we adopt the usual math-
ematical convention that a finite function is a finite set of ordered pairs, then
we need to represent all sets of the form {(var1, val1), . . . , (varn, valn)} where
the vari are distinct variables and the vali are any Scheme values. We some-
times call the value of the variable var in an environment env its binding in
env.

The interface to this data type has three procedures, specified as follows:

(empty-env) = ∅�
(apply-env f � var) = f (var)
(extend-env var v f �) = g�,

where g(var1) =

{
v if var1 = var
f (var1) otherwise

The procedure empty-env, applied to no arguments, must produce a repre-
sentation of the empty environment; apply-env applies a representation of
an environment to a variable and (extend-env var val env) produces a
new environment that behaves like env, except that its value at variable var
is val. For example, the expression

> (define e
(extend-env ’d 6

(extend-env ’y 8
(extend-env ’x 7
(extend-env ’y 14

(empty-env))))))

defines an environment e such that e(d) = 6, e(x) = 7, e(y) = 8, and e is unde-
fined on any other variables. This is, of course, only one of many different
ways of building this environment. For instance, in the example above the
binding of y to 14 is overridden by its later binding to 8.

As in the previous example, we can divide the procedures of the inter-
face into constructors and observers. In this example, empty-env and
extend-env are the constructors, and apply-env is the only observer.

2.2 Representation Strategies for Data Types 37

Exercise 2.4 [� �] Consider the data type of stacks of values, with an interface consist-
ing of the procedures empty-stack, push, pop, top, and empty-stack?. Write a
specification for these operations in the style of the example above. Which operations
are constructors and which are observers?

2.2.2 Data Structure Representation

We can obtain a representation of environments by observing that every
environment can be built by starting with the empty environment and apply-
ing extend-env n times, for some n ≥ 0, e.g.,

(extend-env varn valn

...
(extend-env var1 val1

(empty-env))...)

So every environment can be built by an expression in the following gram-
mar:

Env-exp ::= (empty-env)

::= (extend-env Identifier Scheme-value Env-exp)

We could represent environments using the same grammar to describe a
set of lists. This would give the implementation shown in figure 2.1. The
procedure apply-env looks at the data structure env representing an envi-
ronment, determines what kind of environment it represents, and does the
right thing. If it represents the empty environment, then an error is reported.
If it represents an environment built by extend-env, then it checks to see if
the variable it is looking for is the same as the one bound in the environment.
If it is, then the saved value is returned. Otherwise, the variable is looked up
in the saved environment.

This is a very common pattern of code. We call it the interpreter recipe:

The Interpreter Recipe

1. Look at a piece of data.

2. Decide what kind of data it represents.

3. Extract the components of the datum and do the right thing with
them.

38 2 Data Abstraction

Env = (empty-env) | (extend-env Var SchemeVal Env)
Var = Sym

empty-env : () → Env
(define empty-env

(lambda () (list ’empty-env)))

extend-env : Var × SchemeVal × Env → Env
(define extend-env

(lambda (var val env)
(list ’extend-env var val env)))

apply-env : Env × Var → SchemeVal
(define apply-env

(lambda (env search-var)
(cond

((eqv? (car env) ’empty-env)
(report-no-binding-found search-var))

((eqv? (car env) ’extend-env)
(let ((saved-var (cadr env))

(saved-val (caddr env))
(saved-env (cadddr env)))

(if (eqv? search-var saved-var)
saved-val
(apply-env saved-env search-var))))

(else
(report-invalid-env env)))))

(define report-no-binding-found
(lambda (search-var)
(eopl:error ’apply-env "No binding for ~s" search-var)))

(define report-invalid-env
(lambda (env)
(eopl:error ’apply-env "Bad environment: ~s" env)))

Figure 2.1 A data-structure representation of environments

2.2 Representation Strategies for Data Types 39

Exercise 2.5 [�] We can use any data structure for representing environments, if we
can distinguish empty environments from non-empty ones, and in which one can
extract the pieces of a non-empty environment. Implement environments using a
representation in which the empty environment is represented as the empty list, and
in which extend-env builds an environment that looks like

saved−env

saved−valsaved−var

This is called an a-list or association-list representation.

Exercise 2.6 [�] Invent at least three different representations of the environment
interface and implement them.

Exercise 2.7 [�] Rewrite apply-env in figure 2.1 to give a more informative error
message.

Exercise 2.8 [�] Add to the environment interface an observer called empty-env?
and implement it using the a-list representation.

Exercise 2.9 [�] Add to the environment interface an observer called has-binding?
that takes an environment env and a variable s and tests to see if s has an associated
value in env. Implement it using the a-list representation.

Exercise 2.10 [�] Add to the environment interface a constructor extend-env*, and
implement it using the a-list representation. This constructor takes a list of variables,
a list of values of the same length, and an environment, and is specified by

(extend-env* (var1 ... vark) (val1 ... valk) � f �)= �g�,

where g(var) =

{
vali if var = vari for some i such that 1 ≤ i ≤ k
f (var) otherwise

Exercise 2.11 [� �] A naive implementation of extend-env* from the preceding
exercise requires time proportional to k to run. It is possible to represent environ-
ments so that extend-env* requires only constant time: represent the empty envi-
ronment by the empty list, and represent a non-empty environment by the data struc-
ture

saved−env

saved−vars saved−vals

Such an environment might look like

40 2 Data Abstraction

rest of environment

backbone

(11 12 13)(a b c) (x z) (66 77) (x y) (88 99)

This is called the ribcage representation. The environment is represented as a list of
pairs called ribs; each left rib is a list of variables and each right rib is the correspond-
ing list of values.

Implement the environment interface, including extend-env*, in this representa-
tion.

2.2.3 Procedural Representation

The environment interface has an important property: it has exactly one
observer, apply-env. This allows us to represent an environment as a
Scheme procedure that takes a variable and returns its associated value.

To do this, we define empty-env and extend-env to return procedures
that, when applied, do the same thing that apply-env did in the preceding
section. This gives us the following implementation.

Env = Var → SchemeVal

empty-env : () → Env
(define empty-env

(lambda ()
(lambda (search-var)

(report-no-binding-found search-var))))

extend-env : Var × SchemeVal × Env → Env
(define extend-env

(lambda (saved-var saved-val saved-env)
(lambda (search-var)

(if (eqv? search-var saved-var)
saved-val
(apply-env saved-env search-var)))))

apply-env : Env × Var → SchemeVal
(define apply-env

(lambda (env search-var)
(env search-var)))

2.2 Representation Strategies for Data Types 41

If the empty environment, created by invoking empty-env, is passed any
variable whatsoever, it indicates with an error message that the given vari-
able is not in its domain. The procedure extend-env returns a new pro-
cedure that represents the extended environment. This procedure, when
passed a variable search-var, checks to see if the variable it is looking for
is the same as the one bound in the environment. If it is, then the saved value
is returned. Otherwise, the variable is looked up in the saved environment.

We call this a procedural representation, in which the data is represented by
its action under apply-env.

The case of a data type with a single observer is less rare than one might
think. For example, if the data being represented is a set of functions, then it
can be represented by its action under application. In this case, we can extract
the interface and the procedural representation by the following recipe:

1. Identify the lambda expressions in the client code whose evaluation yields
values of the type. Create a constructor procedure for each such lambda
expression. The parameters of the constructor procedure will be the free
variables of the lambda expression. Replace each such lambda expression
in the client code by an invocation of the corresponding constructor.

2. Define an apply- procedure like apply-env above. Identify all the
places in the client code, including the bodies of the constructor proce-
dures, where a value of the type is applied. Replace each such application
by an invocation of the apply- procedure.

If these steps are carried out, the interface will consist of all the con-
structor procedures and the apply- procedure, and the client code will be
representation-independent: it will not rely on the representation, and we
will be free to substitute another implementation of the interface, such as the
one we describe in section 2.2.2.

If the implementation language does not allow higher-order procedures,
then one can perform the additional step of implementing the resulting inter-
face using a data structure representation and the interpreter recipe, as in the
preceding section. This process is called defunctionalization. The derivation
of the data structure representation of environments is a simple example of
defunctionalization. The relation between procedural and defunctionalized
representations will be a recurring theme in this book.

42 2 Data Abstraction

Exercise 2.12 [�] Implement the stack data type of exercise 2.4 using a procedural
representation.

Exercise 2.13 [� �] Extend the procedural representation to implement empty-env?
by representing the environment by a list of two procedures: one that returns the
value associated with a variable, as before, and one that returns whether or not the
environment is empty.

Exercise 2.14 [� �] Extend the representation of the preceding exercise to include a
third procedure that implements has-binding? (see exercise 2.9).

2.3 Interfaces for Recursive Data Types

We spent much of chapter 1 manipulating recursive data types. For example,
we defined lambda-calculus expressions in definition 1.1.8 by the grammar

Lc-exp ::= Identifier
::= (lambda (Identifier) Lc-exp)
::= (Lc-exp Lc-exp)

and we wrote procedures like occurs-free?. As we mentioned at the time,
the definition of occurs-free? in section 1.2.4 is not as readable as it might
be. It is hard to tell, for example, that (car (cadr exp)) refers to the dec-
laration of a variable in a lambda expression, or that (caddr exp) refers
to its body.

We can improve this situation by introducing an interface for lambda-
calculus expressions. Our interface will have constructors and two kinds
of observers: predicates and extractors.

The constructors are:

var-exp : Var→ Lc-exp
lambda-exp : Var× Lc-exp → Lc-exp
app-exp : Lc-exp× Lc-exp→ Lc-exp

The predicates are:

var-exp? : Lc-exp→ Bool
lambda-exp? : Lc-exp→ Bool
app-exp? : Lc-exp→ Bool

Finally, the extractors are

2.3 Interfaces for Recursive Data Types 43

var-exp->var : Lc-exp→ Var
lambda-exp->bound-var : Lc-exp→ Var
lambda-exp->body : Lc-exp→ Lc-exp
app-exp->rator : Lc-exp→ Lc-exp
app-exp->rand : Lc-exp→ Lc-exp

Each of these extracts the corresponding portion of the lambda-calculus
expression. We can now write a version of occurs-free? that depends
only on the interface.

occurs-free? : Sym × LcExp → Bool
(define occurs-free?

(lambda (search-var exp)
(cond
((var-exp? exp) (eqv? search-var (var-exp->var exp)))
((lambda-exp? exp)
(and

(not (eqv? search-var (lambda-exp->bound-var exp)))
(occurs-free? search-var (lambda-exp->body exp))))

(else
(or

(occurs-free? search-var (app-exp->rator exp))
(occurs-free? search-var (app-exp->rand exp)))))))

This works on any representation of lambda-calculus expressions, so long
as they are built using these constructors.

We can write down a general recipe for designing an interface for a recur-
sive data type:

Designing an interface for a recursive data type

1. Include one constructor for each kind of data in the data type.

2. Include one predicate for each kind of data in the data type.

3. Include one extractor for each piece of data passed to a constructor
of the data type.

Exercise 2.15 [�] Implement the lambda-calculus expression interface for the repre-
sentation specified by the grammar above.

Exercise 2.16 [�] Modify the implementation to use a representation in which there
are no parentheses around the bound variable in a lambda expression.

44 2 Data Abstraction

Exercise 2.17 [�] Invent at least two other representations of the data type of lambda-
calculus expressions and implement them.

Exercise 2.18 [�] We usually represent a sequence of values as a list. In this represen-
tation, it is easy to move from one element in a sequence to the next, but it is hard
to move from one element to the preceding one without the help of context argu-
ments. Implement non-empty bidirectional sequences of integers, as suggested by
the grammar

NodeInSequence ::= (Int Listof(Int) Listof(Int))

The first list of numbers is the elements of the sequence preceding the current one,
in reverse order, and the second list is the elements of the sequence after the current
one. For example, (6 (5 4 3 2 1) (7 8 9)) represents the list (1 2 3 4 5 6
7 8 9), with the focus on the element 6.

In this representation, implement the procedure number->sequence, which takes
a number and produces a sequence consisting of exactly that number. Also imple-
ment current-element, move-to-left, move-to-right, insert-to-left,
insert-to-right, at-left-end?, and at-right-end?.

For example:

> (number->sequence 7)
(7 () ())
> (current-element ’(6 (5 4 3 2 1) (7 8 9)))
6
> (move-to-left ’(6 (5 4 3 2 1) (7 8 9)))
(5 (4 3 2 1) (6 7 8 9))
> (move-to-right ’(6 (5 4 3 2 1) (7 8 9)))
(7 (6 5 4 3 2 1) (8 9))
> (insert-to-left 13 ’(6 (5 4 3 2 1) (7 8 9)))
(6 (13 5 4 3 2 1) (7 8 9))
> (insert-to-right 13 ’(6 (5 4 3 2 1) (7 8 9)))
(6 (5 4 3 2 1) (13 7 8 9))

The procedure move-to-right should fail if its argument is at the right end of the
sequence, and the procedure move-to-left should fail if its argument is at the left
end of the sequence.

Exercise 2.19 [�] A binary tree with empty leaves and with interior nodes labeled
with integers could be represented using the grammar

Bintree ::= () | (Int Bintree Bintree)

In this representation, implement the procedure number->bintree, which takes a
number and produces a binary tree consisting of a single node containing that num-
ber. Also implement current-element, move-to-left-son, move-to-right-
son, at-leaf?, insert-to-left, and insert-to-right. For example,

2.4 A Tool for Defining Recursive Data Types 45

> (number->bintree 13)
(13 () ())
> (define t1 (insert-to-right 14

(insert-to-left 12
(number->bintree 13)))

> t1
(13

(12 () ())
(14 () ()))

> (move-to-left t1)
(12 () ())
> (current-element (move-to-left t1))
12
> (at-leaf? (move-to-right (move-to-left t1)))
#t
> (insert-to-left 15 t1)
(13

(15
(12 () ())
())

(14 () ()))

Exercise 2.20 [� � �] In the representation of binary trees in exercise 2.19 it is easy to
move from a parent node to one of its sons, but it is impossible to move from a son to
its parent without the help of context arguments. Extend the representation of lists in
exercise 2.18 to represent nodes in a binary tree. As a hint, consider representing the
portion of the tree above the current node by a reversed list, as in exercise 2.18.

In this representation, implement the procedures from exercise 2.19. Also implement
move-up, at-root?, and at-leaf?.

2.4 A Tool for Defining Recursive Data Types

For complicated data types, applying the recipe for constructing an interface
can quickly become tedious. In this section, we introduce a tool for auto-
matically constructing and implementing such interfaces in Scheme. The
interfaces constructed by this tool will be similar, but not identical, to the
interface constructed in the preceding section.

46 2 Data Abstraction

Consider again the data type of lambda-calculus expressions, as discussed
in the preceding section. We can implement an interface for lambda-calculus
expressions by writing

(define-datatype lc-exp lc-exp?
(var-exp
(var identifier?))

(lambda-exp
(bound-var identifier?)
(body lc-exp?))

(app-exp
(rator lc-exp?)
(rand lc-exp?)))

Here the names var-exp, var, bound-var, app-exp, rator, and rand
abbreviate variable expression, variable, bound variable, application expression,
operator, and operand, respectively.

This expression declares three constructors, var-exp, lambda-exp, and
app-exp, and a single predicate lc-exp?. The three constructors check
their arguments with the predicates identifier? and lc-exp? to make
sure that the arguments are valid, so if an lc-exp is constructed using only
these constructors, we can be certain that it and all its subexpressions are
legal lc-exps. This allows us to ignore many checks while processing lambda
expressions.

In place of the various predicates and extractors, we use the form cases to
determine the variant to which an object of a data type belongs, and to extract
its components. To illustrate this form, we can rewrite occurs-free?
(page 43) using the data type lc-exp:

occurs-free? : Sym × LcExp → Bool
(define occurs-free?

(lambda (search-var exp)
(cases lc-exp exp

(var-exp (var) (eqv? var search-var))
(lambda-exp (bound-var body)

(and
(not (eqv? search-var bound-var))
(occurs-free? search-var body)))

(app-exp (rator rand)
(or
(occurs-free? search-var rator)
(occurs-free? search-var rand))))))

2.4 A Tool for Defining Recursive Data Types 47

To see how this works, assume that exp is a lambda-calculus expression
that was built by app-exp. For this value of exp, the app-exp case would
be selected, rator and rand would be bound to the two subexpressions,
and the expression

(or
(occurs-free? search-var rator)
(occurs-free? search-var rand))

would be evaluated, just as if we had written

(if (app-exp? exp)
(let ((rator (app-exp->rator exp))

(rand (app-exp->rand exp)))
(or
(occurs-free? search-var rator)
(occurs-free? search-var rand)))

...)

The recursive calls to occurs-free? work similarly to finish the calcula-
tion.

In general, a define-datatype declaration has the form

(define-datatype type-name type-predicate-name
{(variant-name {(field-name predicate)}∗)}+)

This creates a data type, named type-name, with some variants. Each variant
has a variant-name and zero or more fields, each with its own field-name and
associated predicate. No two types may have the same name and no two
variants, even those belonging to different types, may have the same name.
Also, type names cannot be used as variant names. Each field predicate must
be a Scheme predicate.

For each variant, a new constructor procedure is created that is used to
create data values belonging to that variant. These procedures are named
after their variants. If there are n fields in a variant, its constructor takes
n arguments, tests each of them with its associated predicate, and returns a
new value of the given variant with the i-th field containing the i-th argument
value.

The type-predicate-name is bound to a predicate. This predicate determines
if its argument is a value belonging to the named type.

48 2 Data Abstraction

A record can be defined as a data type with a single variant. To distinguish
data types with only one variant, we use a naming convention. When there
is a single variant, we name the constructor a-type-name or an-type-name;
otherwise, the constructors have names like variant-name-type-name.

Data types built by define-datatype may be mutually recursive. For
example, consider the grammar for s-lists from section 1.1:

S-list ::= ({S-exp}∗)
S-exp ::= Symbol | S-list

The data in an s-list could be represented by the data type s-list defined
by

(define-datatype s-list s-list?
(empty-s-list)
(non-empty-s-list
(first s-exp?)
(rest s-list?)))

(define-datatype s-exp s-exp?
(symbol-s-exp
(sym symbol?))

(s-list-s-exp
(slst s-list?)))

The data type s-list gives its own representation of lists by using
(empty-s-list) and non-empty-s-list in place of () and cons; if we
wanted to specify that Scheme lists be used instead, we could have written

(define-datatype s-list s-list?
(an-s-list
(sexps (list-of s-exp?))))

(define list-of
(lambda (pred)
(lambda (val)

(or (null? val)
(and (pair? val)
(pred (car val))
((list-of pred) (cdr val)))))))

Here (list-of pred) builds a predicate that tests to see if its argument is a
list, and that each of its elements satisfies pred.

2.4 A Tool for Defining Recursive Data Types 49

The general syntax of cases is

(cases type-name expression
{(variant-name ({field-name}∗) consequent)}∗

(else default))

The form specifies the type, the expression yielding the value to be examined,
and a sequence of clauses. Each clause is labeled with the name of a variant
of the given type and the names of its fields. The else clause is optional.
First, expression is evaluated, resulting in some value v of type-name. If v is
a variant of variant-name, then the corresponding clause is selected. Each of
the field-names is bound to the value of the corresponding field of v. Then
the consequent is evaluated within the scope of these bindings and its value
returned. If v is not one of the variants, and an else clause has been spec-
ified, default is evaluated and its value returned. If there is no else clause,
then there must be a clause for every variant of that data type.

The form cases binds its variables positionally: the i-th variable is bound
to the value in the i-th field. So we could just as well have written

(app-exp (exp1 exp2)
(or

(occurs-free? search-var exp1)
(occurs-free? search-var exp2)))

instead of

(app-exp (rator rand)
(or

(occurs-free? search-var rator)
(occurs-free? search-var rand)))

The forms define-datatype and cases provide a convenient way of
defining an inductive data type, but it is not the only way. Depending on
the application, it may be valuable to use a special-purpose representation
that is more compact or efficient, taking advantage of special properties of
the data. These advantages are gained at the expense of having to write the
procedures in the interface by hand.

The form define-datatype is an example of a domain-specific language.
A domain-specific language is a small language for describing a single task
among a small, well-defined set of tasks. In this case, the task was defining
a recursive data type. Such a language may lie inside a general-purpose lan-
guage, as define-datatype does, or it may be a standalone language with

50 2 Data Abstraction

its own set of tools. In general, one constructs such a language by identifying
the possible variations in the set of tasks, and then designing a language that
describes those variations. This is often a very useful strategy.

Exercise 2.21 [�] Implement the data type of environments, as in section 2.2.2, using
define-datatype. Then include has-binding? of exercise 2.9.

Exercise 2.22 [�] Using define-datatype, implement the stack data type of exer-
cise 2.4.

Exercise 2.23 [�] The definition of lc-exp ignores the condition in definition 1.1.8
that says “Identifier is any symbol other than lambda.” Modify the definition of
identifier? to capture this condition. As a hint, remember that any predicate
can be used in define-datatype, even ones you define.

Exercise 2.24 [�] Here is a definition of binary trees using define-datatype.

(define-datatype bintree bintree?
(leaf-node
(num integer?))

(interior-node
(key symbol?)
(left bintree?)
(right bintree?)))

Implement a bintree-to-list procedure for binary trees, so that (bintree-to-
list (interior-node ’a (leaf-node 3) (leaf-node 4))) returns the list

(interior-node
a
(leaf-node 3)
(leaf-node 4))

Exercise 2.25 [� �] Use cases to write max-interior, which takes a binary tree of
integers (as in the preceding exercise) with at least one interior node and returns the
symbol associated with an interior node with a maximal leaf sum.

> (define tree-1
(interior-node ’foo (leaf-node 2) (leaf-node 3)))

> (define tree-2
(interior-node ’bar (leaf-node -1) tree-1))

> (define tree-3
(interior-node ’baz tree-2 (leaf-node 1)))

> (max-interior tree-2)
foo
> (max-interior tree-3)
baz

The last invocation of max-interior might also have returned foo, since both the
foo and baz nodes have a leaf sum of 5.

2.5 Abstract Syntax and Its Representation 51

Exercise 2.26 [� �] Here is another version of exercise 1.33. Consider a set of trees
given by the following grammar:

Red-blue-tree ::= Red-blue-subtree
Red-blue-subtree ::= (red-node Red-blue-subtree Red-blue-subtree)

::= (blue-node {Red-blue-subtree}∗)
::= (leaf-node Int)

Write an equivalent definition using define-datatype, and use the resulting inter-
face to write a procedure that takes a tree and builds a tree of the same shape, except
that each leaf node is replaced by a leaf node that contains the number of red nodes
on the path between it and the root.

2.5 Abstract Syntax and Its Representation

A grammar usually specifies a particular representation of an inductive data
type: one that uses the strings or values generated by the grammar. Such a
representation is called concrete syntax, or external representation.

Consider, for example, the set of lambda-calculus expressions defined in
definition 1.1.8. This gives a concrete syntax for lambda-calculus expres-
sions. We might have used some other concrete syntax for lambda-calculus
expressions. For example, we could have written

Lc-exp ::= Identifier
::= proc Identifier => Lc-exp
::= Lc-exp(Lc-exp)

to define lambda-calculus expressions as a different set of strings.
In order to process such data, we need to convert it to an internal represen-

tation. The define-datatype form provides a convenient way of defining
such an internal representation. We call this abstract syntax. In the abstract
syntax, terminals such as parentheses need not be stored, because they con-
vey no information. On the other hand, we want to make sure that the data
structure allows us to determine what kind of lambda-calculus expression it
represents, and to extract its components. The data type lc-exp on page 46
allows us to do both of these things easily.

It is convenient to visualize the internal representation as an abstract syn-
tax tree. Figure 2.2 shows the abstract syntax tree of the lambda-calculus
expression (lambda (x) (f (f x))), using the data type lc-exp. Each
internal node of the tree is labeled with the associated production name.
Edges are labeled with the name of the corresponding nonterminal occur-
rence. Leaves correspond to terminal strings.

52 2 Data Abstraction

Figure 2.2 Abstract syntax tree for (lambda (x) (f (f x)))

To create an abstract syntax for a given concrete syntax, we must name
each production of the concrete syntax and each occurrence of a nonterminal
in each production. It is straightforward to generate define-datatype
declarations for the abstract syntax. We create one define-datatype for
each nonterminal, with one variant for each production.

We can summarize the choices we have made in figure 2.2 using the fol-
lowing concise notation:

Lc-exp ::= Identifier
var-exp (var)

::= (lambda (Identifier) Lc-exp)
lambda-exp (bound-var body)

::= (Lc-exp Lc-exp)
app-exp (rator rand)

Such notation, which specifies both concrete and abstract syntax, is used
throughout this book.

Having made the distinction between concrete syntax, which is primarily
useful for humans, and abstract syntax, which is primarily useful for com-
puters, we now consider how to convert from one syntax to the other.

2.5 Abstract Syntax and Its Representation 53

If the concrete syntax is a set of strings of characters, it may be a complex
undertaking to derive the corresponding abstract syntax tree. This task is
called parsing and is performed by a parser. Because writing a parser is dif-
ficult in general, it is best performed by a tool called a parser generator. A
parser generator takes as input a grammar and produces a parser. Since the
grammars are processed by a tool, they must be written in some machine-
readable language: a domain-specific language for writing grammars. There
are many parser generators available.

If the concrete syntax is given as a set of lists, the parsing process is
considerably simplified. For example, the grammar for lambda-calculus
expressions at the beginning of this section specified a set of lists, as did
the grammar for define-datatype on page 47. In this case, the Scheme
read routine automatically parses strings into lists and symbols. It is
then easier to parse these list structures into abstract syntax trees as in
parse-expression.

parse-expression : SchemeVal → LcExp
(define parse-expression

(lambda (datum)
(cond
((symbol? datum) (var-exp datum))
((pair? datum)
(if (eqv? (car datum) ’lambda)

(lambda-exp
(car (cadr datum))
(parse-expression (caddr datum)))

(app-exp
(parse-expression (car datum))
(parse-expression (cadr datum)))))

(else (report-invalid-concrete-syntax datum)))))

It is usually straightforward to convert an abstract syntax tree back to
a list-and-symbol representation. If we do this, the Scheme print routines
will then display it in a list-based concrete syntax. This is performed by
unparse-lc-exp:

unparse-lc-exp : LcExp → SchemeVal
(define unparse-lc-exp

(lambda (exp)
(cases lc-exp exp
(var-exp (var) var)
(lambda-exp (bound-var body)

(list ’lambda (list bound-var)
(unparse-lc-exp body)))

(app-exp (rator rand)
(list

54 2 Data Abstraction

(unparse-lc-exp rator) (unparse-lc-exp rand))))))

Exercise 2.27 [�] Draw the abstract syntax tree for the lambda calculus expressions

((lambda (a) (a b)) c)

(lambda (x)
(lambda (y)
((lambda (x)

(x y))
x)))

Exercise 2.28 [�] Write an unparser that converts the abstract syntax of an lc-exp into
a string that matches the second grammar in this section (page 52).

Exercise 2.29 [�] Where a Kleene star or plus (page 7) is used in concrete syntax, it
is most convenient to use a list of associated subtrees when constructing an abstract
syntax tree. For example, if the grammar for lambda-calculus expressions had been

Lc-exp ::= Identifier
var-exp (var)

::= (lambda ({Identifier}∗) Lc-exp)
lambda-exp (bound-vars body)

::= (Lc-exp {Lc-exp}∗)
app-exp (rator rands)

then the predicate for the bound-vars field could be (list-of identifier?),
and the predicate for the rands field could be (list-of lc-exp?). Write a
define-datatype and a parser for this grammar that works in this way.

Exercise 2.30 [� �] The procedure parse-expression as defined above is fragile:
it does not detect several possible syntactic errors, such as (a b c), and aborts with
inappropriate error messages for other expressions, such as (lambda). Modify it so
that it is robust, accepting any s-exp and issuing an appropriate error message if the
s-exp does not represent a lambda-calculus expression.

2.5 Abstract Syntax and Its Representation 55

Exercise 2.31 [� �] Sometimes it is useful to specify a concrete syntax as a sequence
of symbols and integers, surrounded by parentheses. For example, one might define
the set of prefix lists by

Prefix-list ::= (Prefix-exp)
Prefix-exp ::= Int

::= - Prefix-exp Prefix-exp

so that (- - 3 2 - 4 - 12 7) is a legal prefix list. This is sometimes called Polish
prefix notation, after its inventor, Jan Łukasiewicz. Write a parser to convert a prefix-
list to the abstract syntax

(define-datatype prefix-exp prefix-exp?
(const-exp

(num integer?))
(diff-exp

(operand1 prefix-exp?)
(operand2 prefix-exp?)))

so that the example above produces the same abstract syntax tree as the sequence of
constructors

(diff-exp
(diff-exp

(const-exp 3)
(const-exp 2))

(diff-exp
(const-exp 4)
(diff-exp
(const-exp 12)
(const-exp 7))))

As a hint, consider writing a procedure that takes a list and produces a prefix-exp
and the list of leftover list elements.

3 Expressions

In this chapter, we study the binding and scoping of variables. We do this by
presenting a sequence of small languages that illustrate these concepts. We
write specifications for these languages, and implement them using inter-
preters, following the interpreter recipe from chapter 1. Our specifications
and interpreters take a context argument, called the environment, which keeps
track of the meaning of each variable in the expression being evaluated.

3.1 Specification and Implementation Strategy

Our specification will consist of assertions of the form

(value-of exp ρ) = val

meaning that the value of expression exp in environment ρ should be val. We
write down rules of inference and equations, like those in chapter 1, that will
enable us to derive such assertions. We use the rules and equations by hand
to find the intended value of some expressions.

But our goal is to write a program that implements our language. The
overall picture is shown in figure 3.1(a). We start with the text of the pro-
gram written in the language we are implementing. This is called the source
language or the defined language. Program text (a program in the source lan-
guage) is passed through a front end that converts it to an abstract syntax
tree. The syntax tree is then passed to the interpreter, which is a program
that looks at a data structure and performs some actions that depend on its
structure. Of course the interpreter is itself written in some language. We
call that language the implementation language or the defining language. Most
of our implementations will follow this pattern.

58 3 Expressions

Another common organization is shown in figure 3.1(b). There the inter-
preter is replaced by a compiler, which translates the abstract syntax tree into
a program in some other language (the target language), and that program is
executed. That target language may be executed by an interpreter, as in fig-
ure 3.1(b), or it may be translated into some even lower-level language for
execution.

Most often, the target language is a machine language, which is interpreted
by a hardware machine. Yet another possibility is that the target machine is
a special-purpose language that is simpler than the original and for which
it is relatively simple to write an interpreter. This allows the program to be
compiled once and then executed on many different hardware platforms. For
historical reasons, such a target language is often called a byte code, and its
interpreter is called a virtual machine.

A compiler is typically divided into two parts: an analyzer that attempts
to deduce useful information about the program, and a translator that does
the translation, possibly using information from the analyzer. Each of these
phases may be specified either by rules of inference or a special-purpose
specification language, and then implemented. We study some simple ana-
lyzers and translators in chapters 6 and 7.

No matter what implementation strategy we use, we need a front end
that converts programs into abstract syntax trees. Because programs are
just strings of characters, our front end needs to group these characters into
meaningful units. This grouping is usually divided into two stages: scanning
and parsing.

Scanning is the process of dividing the sequence of characters into words,
numbers, punctuation, comments, and the like. These units are called lexi-
cal items, lexemes, or most often tokens. We refer to the way in which a pro-
gram should be divided up into tokens as the lexical specification of the lan-
guage. The scanner takes a sequence of characters and produces a sequence
of tokens.

Parsing is the process of organizing the sequence of tokens into hierar-
chical syntactic structures such as expressions, statements, and blocks. This
is like organizing (diagramming) a sentence into clauses. We refer to this
as the syntactic or grammatical structure of the language. The parser takes a
sequence of tokens from the scanner and produces an abstract syntax tree.

The standard approach to building a front end is to use a parser generator.
A parser generator is a program that takes as input a lexical specification and
a grammar, and produces as output a scanner and parser for them.

3.1 Specification and Implementation Strategy 59

Front End

program text syntax tree

Front End

program text syntax tree

Interpreter

answer

or Machine

translated
program

Compiler

Interpreter

answer

Real World

input−output

Real World

input−output

(b) Execution via Compiler

(a) Execution via interpreter

Figure 3.1 Block diagrams for a language-processing system

Parser generator systems are available for most major languages. If no
parser generator is available, or none is suitable for the application, one can
choose to build a scanner and parser by hand. This process is described in
compiler textbooks. The parsing technology and associated grammars we
use are designed for simplicity in the context of our very specialized needs.

Another approach is to ignore the details of the concrete syntax and
to write our expressions as list structures, as we did for lambda-calculus
expressions with the procedure parse-expression in section 2.5 and exer-
cise 2.31.

60 3 Expressions

Program ::= Expression
a-program (exp1)

Expression ::= Number
const-exp (num)

Expression ::= -(Expression , Expression)
diff-exp (exp1 exp2)

Expression ::= zero? (Expression)
zero?-exp (exp1)

Expression ::= if Expression then Expression else Expression
if-exp (exp1 exp2 exp3)

Expression ::= Identifier
var-exp (var)

Expression ::= let Identifier = Expression in Expression
let-exp (var exp1 body)

Figure 3.2 Syntax for the LET language

3.2 LET: A Simple Language

We begin by specifying a very simple language, which we call LET, after its
most interesting feature.

3.2.1 Specifying the Syntax

Figure 3.2 shows the syntax of our simple language. In this language, a pro-
gram is just an expression. An expression is either an integer constant, a
difference expression, a zero-test expression, a conditional expression, a vari-
able, or a let expression.

Here is a simple expression in this language and its representation as
abstract syntax.

(scan&parse "-(55, -(x,11))")
#(struct:a-program

#(struct:diff-exp
#(struct:const-exp 55)
#(struct:diff-exp

#(struct:var-exp x)
#(struct:const-exp 11))))

3.2 LET: A Simple Language 61

3.2.2 Specification of Values

An important part of the specification of any programming language is the
set of values that the language manipulates. Each language has at least two
such sets: the expressed values and the denoted values. The expressed values
are the possible values of expressions, and the denoted values are the values
bound to variables.

In the languages of this chapter, the expressed and denoted values will
always be the same. They will start out as

ExpVal = Int+Bool
DenVal = Int+Bool

Chapter 4 presents languages in which expressed and denoted values are
different.

In order to make use of this definition, we will need an interface for the
data type of expressed values. Our interface will have the entries

num-val : Int→ExpVal
bool-val : Bool→ExpVal
expval->num : ExpVal→ Int
expval->bool : ExpVal→Bool

We assume that expval->num and expval->bool are undefined when
given an argument that is not a number or a boolean, respectively.

3.2.3 Environments

If we are going to evaluate expressions containing variables, we will need to
know the value associated with each variable. We do this by keeping those
values in an environment, as defined in section 2.2.

An environment is a function whose domain is a finite set of variables and
whose range is the denoted values. We use some abbreviations when writing
about environments.

• ρ ranges over environments.

• [] denotes the empty environment.

• [var = val]ρ denotes (extend-env var val ρ).

• [var1 = val1, var2 = val2]ρ abbreviates [var1 = val1]([var2 = val2]ρ),
etc.

• [var1 = val1, var2 = val2, . . .] denotes the environment in which the
value of var1 is val1, etc.

62 3 Expressions

We will occasionally write down complicated environments using inden-
tation to improve readability. For example, we might write

[x=3]
[y=7]
[u=5]ρ

to abbreviate

(extend-env ’x 3
(extend-env ’y 7
(extend-env ’u 5 ρ)))

3.2.4 Specifying the Behavior of Expressions

There are six kinds of expressions in our language: one for each production
with Expression as its left-hand side. Our interface for expressions will con-
tain seven procedures: six constructors and one observer. We use ExpVal to
denote the set of expressed values.

constructors:

const-exp : Int→Exp
zero?-exp : Exp→ Exp
if-exp : Exp× Exp× Exp→ Exp
diff-exp : Exp× Exp→ Exp
var-exp : Var→ Exp
let-exp : Var× Exp× Exp→ Exp

observer:

value-of : Exp× Env → ExpVal

Before starting on an implementation, we write down a specification for
the behavior of these procedures. Following the interpreter recipe, we expect
that value-of will look at the expression, determine what kind of expres-
sion it is, and return the appropriate value.

(value-of (const-exp n) ρ) = (num-val n)

(value-of (var-exp var) ρ) = (apply-env ρ var)

(value-of (diff-exp exp1 exp2) ρ)
= (num-val

(-
(expval->num (value-of exp1 ρ))
(expval->num (value-of exp2 ρ))))

3.2 LET: A Simple Language 63

The value of a constant expression in any environment is the constant val-
ue. The value of a variable reference in an environment is determined by
looking up the variable in the environment. The value of a difference expres-
sion in some environment is the difference between the value of the first
operand in that environment and the value of the second operand in that
environment. Of course, to be precise we have to make sure that the values
of the operands are numbers, and we have to make sure that value of the
result is a number represented as an expressed value.

Figure 3.3 shows how these rules work together to specify the value of an
expression built by these constructors. In this and our other examples, we
write «exp» to denote the AST for expression exp. We also write n� in place
of (num-val n), and �val� in place of (expval->num val). We will also
use the fact that �n�� = n.

Exercise 3.1 [�] In figure 3.3, list all the places where we used the fact that �n��= n.

Exercise 3.2 [� �] Give an expressed value val ∈ ExpVal for which �val�� �= val.

3.2.5 Specifying the Behavior of Programs

In our language, a whole program is just an expression. In order to find the
value of such an expression, we need to specify the values of the free vari-
ables in the program. So the value of a program is just the value of that
expression in a suitable initial environment. We choose our initial environ-
ment to be [i=1,v=5,x=10].

(value-of-program exp)
= (value-of exp [i=1�,v=5�,x=10�])

3.2.6 Specifying Conditionals

The next portion of the language introduces an interface for booleans in our
language. The language has one constructor of booleans, zero?, and one
observer of booleans, the if expression.

The value of a zero? expression is a true value if and only if the value
of its operand is zero. We can write this as a rule of inference like those in
definition 1.1.5. We use bool-val as a constructor to turn a boolean into
an expressed value, and expval->num as an extractor to check whether an
expressed value is an integer, and if so, to return the integer.

64 3 Expressions

Let ρ = [i=1,v=5,x=10].

(value-of
<<-(-(x,3), -(v,i))>>
ρ)

= (-
�(value-of <<-(x,3)>> ρ)�
�(value-of <<-(v,i)>> ρ)�)�

= (-
(-

�(value-of <<x>> ρ)�
�(value-of <<3>> ρ)�)

�(value-of <<-(v,i)>> ρ)�)�

= (-
(-
10
�(value-of <<3>> ρ)�)

(value-of <<-(v,i)>> ρ))�

= (-
(-
10
3)

�(value-of <<-(v,i)>> ρ)�)�

= (-
7
�(value-of <<-(v,i)>> ρ)�)�

= (-
7
(-

�(value-of <<v>> ρ)�
�(value-of <<i>> ρ)�))�

= (-
7
(-

5
�(value-of <<i>> ρ)�))�

= (-
7
(-

5
1))�

= (-
7
4)�

= 3�

Figure 3.3 A simple calculation using the specification

3.2 LET: A Simple Language 65

(value-of exp1 ρ) = val1

(value-of (zero?-exp exp1) ρ)

=

{
(bool-val #t) if (expval->num val1) = 0
(bool-val #f) if (expval->num val1) �= 0

An if expression is an observer of boolean values. To determine the value
of an if expression (if-exp exp1 exp2 exp3), we must first determine the
value of the subexpression exp1. If this value is a true value, the value of the
entire if-exp should be the value of the subexpression exp2; otherwise it
should be the value of the subexpression exp3. This is also easy to write as
a rule of inference. We use expval->bool to extract the boolean part of an
expressed value, just as we used expval->num in the preceding example.

(value-of exp1 ρ) = val1

(value-of (if-exp exp1 exp2 exp3) ρ)

=

{
(value-of exp2 ρ) if (expval->bool val1) = #t
(value-of exp3 ρ) if (expval->bool val1) = #f

Rules of inference like this make the intended behavior of any individ-
ual expression easy to specify, but they are not very good for displaying a
deduction. An antecedent like (value-of exp1 ρ) = val1 denotes a sub-
computation, so a calculation should be a tree, much like the one on page 5.
Unfortunately, such trees can be difficult to read. We therefore often recast
our rules as equations. We can then use substitution of equals for equals to
display a calculation.

For an if-exp , the equational specification is

(value-of (if-exp exp1 exp2 exp3) ρ)
= (if (expval->bool (value-of exp1 ρ))

(value-of exp2 ρ)
(value-of exp3 ρ))

Figure 3.4 shows a simple calculation using these rules.

3.2.7 Specifying let

Next we address the problem of creating new variable bindings with a let
expression. We add to the interpreted language a syntax in which the key-
word let is followed by a declaration, the keyword in, and the body. For
example,

66 3 Expressions

Let ρ = [x=33�,y=22�].

(value-of
<<if zero?(-(x,11)) then -(y,2) else -(y,4)>>
ρ)

= (if (expval->bool (value-of <<zero?(-(x,11))>> ρ))
(value-of <<-(y,2)>> ρ)
(value-of <<-(y,4)>> ρ))

= (if (expval->bool (bool-val #f))
(value-of <<-(y,2)>> ρ)
(value-of <<-(y,4)>> ρ))

= (if #f
(value-of <<-(y,2)>> ρ)
(value-of <<-(y,4)>> ρ))

= (value-of <<-(y,4)>> ρ)

= 18�

Figure 3.4 A simple calculation for a conditional expression

let x = 5
in -(x,3)

The let variable is bound in the body, much as a lambda variable is bound
(see section 1.2.4).

The entire let form is an expression, as is its body, so let expressions
may be nested, as in

let z = 5
in let x = 3

in let y = -(x,1) % here x = 3
in let x = 4

in -(z, -(x,y)) % here x = 4

In this example, the reference to x in the first difference expression refers
to the outer declaration, whereas the reference to x in the other difference
expression refers to the inner declaration, and thus the entire expression’s
value is 3.

3.2 LET: A Simple Language 67

The right-hand side of the let is also an expression, so it can be arbitrarily
complex. For example,

let x = 7
in let y = 2

in let y = let x = -(x,1)
in -(x,y)

in -(-(x,8), y)

Here the x declared on the third line is bound to 6, so the value of y is 4, and
the value of the entire expression is ((−1)− 4) = −5.

We can write down the specification as a rule.

(value-of exp1 ρ) = val1

(value-of (let-exp var exp1 body) ρ)
= (value-of body [var = val1]ρ)

As before, it is often more convenient to recast this as the equation

(value-of (let-exp var exp1 body) ρ)
= (value-of body [var=(value-of exp1 ρ)]ρ)

Figure 3.5 shows an example. There ρ0 denotes an arbitrary environment.

3.2.8 Implementing the Specification of LET

Our next task is to implement this specification as a set of Scheme proce-
dures. Our implementation uses SLLGEN as a front end, which means that
expressions will be represented by a data type like the one in figure 3.6. The
representation of expressed values in our implementation is shown in fig-
ure 3.7. The data type declares the constructors num-val and bool-val for
converting integers and booleans to expressed values. We also define extrac-
tors for converting from an expressed value back to either an integer or a
boolean. The extractors report an error if an expressed value is not of the
expected kind.

68 3 Expressions

(value-of
<<let x = 7

in let y = 2
in let y = let x = -(x,1) in -(x,y)

in -(-(x,8),y)>>
ρ0)

= (value-of
<<let y = 2
in let y = let x = -(x,1) in -(x,y)

in -(-(x,8),y)>>
[x=7�]ρ0)

= (value-of
<<let y = let x = -(x,1) in -(x,y)
in -(-(x,8),y)>>

[y=2�][x=7�]ρ0)

Let ρ1 = [y=2�][x=7�]ρ0.

= (value-of
<<-(-(x,8),y)>>
[y=(value-of <<let x = -(x,1) in -(x,y)>> ρ1)]
ρ1)

= (value-of
<<-(-(x,8),y)>>
[y=(value-of <<-(x,2)>> [x=(value-of <<-(x,1)>> ρ1)]ρ1)]
ρ1)

= (value-of
<<-(-(x,8),y)>>
[y=(value-of <<-(x,2)>> [x=6�]ρ1)]
ρ1)

= (value-of
<<-(-(x,8),y)>>
[y=4�]ρ1)

= (- (- 7 8) 4)�

= -5�

Figure 3.5 An example of let

3.2 LET: A Simple Language 69

(define-datatype program program?
(a-program

(exp1 expression?)))

(define-datatype expression expression?
(const-exp

(num number?))
(diff-exp

(exp1 expression?)
(exp2 expression?))

(zero?-exp
(exp1 expression?))

(if-exp
(exp1 expression?)
(exp2 expression?)
(exp3 expression?))

(var-exp
(var identifier?))

(let-exp
(var identifier?)
(exp1 expression?)
(body expression?)))

Figure 3.6 Syntax data types for the LET language

We can use any implementation of environments, provided that it meets
the specification in section 2.2. The procedureinit-env constructs the spec-
ified initial environment used by value-of-program.

init-env : () → Env
usage: (init-env) = [i=1�,v=5�,x=10�]
(define init-env

(lambda ()
(extend-env
’i (num-val 1)
(extend-env
’v (num-val 5)
(extend-env
’x (num-val 10)
(empty-env))))))

70 3 Expressions

(define-datatype expval expval?
(num-val
(num number?))

(bool-val
(bool boolean?)))

expval->num : ExpVal → Int
(define expval->num

(lambda (val)
(cases expval val

(num-val (num) num)
(else (report-expval-extractor-error ’num val)))))

expval->bool : ExpVal → Bool
(define expval->bool

(lambda (val)
(cases expval val

(bool-val (bool) bool)
(else (report-expval-extractor-error ’bool val)))))

Figure 3.7 Expressed values for the LET language

Now we can write down the interpreter, shown in figures 3.8 and 3.9. The
main procedure is run, which takes a string, parses it, and hands the result to
value-of-program. The most interesting procedure is value-of, which
takes an expression and an environment and uses the interpreter recipe
to calculate the answer required by the specification. In the listing below
we have inserted the relevant specification rules to show how the code for
value-of comes from the specification.

In the following exercises, and throughout the book, the phrase “extend the language
by adding . . . ” means to write down additional rules or equations to the language
specification, and to implement the feature by adding or modifying the associated
interpreter.

Exercise 3.3 [�] Why is subtraction a better choice than addition for our single arith-
metic operation?

Exercise 3.4 [�] Write out the derivation of figure 3.4 as a derivation tree in the style
of the one on page 5.

3.2 LET: A Simple Language 71

run : String → ExpVal
(define run

(lambda (string)
(value-of-program (scan&parse string))))

value-of-program : Program → ExpVal
(define value-of-program

(lambda (pgm)
(cases program pgm
(a-program (exp1)

(value-of exp1 (init-env))))))

value-of : Exp × Env → ExpVal
(define value-of

(lambda (exp env)
(cases expression exp

(value-of (const-exp n) ρ) = n
(const-exp (num) (num-val num))

(value-of (var-exp var) ρ) = (apply-env ρ var)
(var-exp (var) (apply-env env var))

(value-of (diff-exp exp1 exp2) ρ) =

(- �(value-of exp1 ρ)� �(value-of exp2 ρ)�)�

(diff-exp (exp1 exp2)
(let ((val1 (value-of exp1 env))

(val2 (value-of exp2 env)))
(let ((num1 (expval->num val1))

(num2 (expval->num val2)))
(num-val

(- num1 num2)))))

Figure 3.8 Interpreter for the LET language

72 3 Expressions

(value-of exp1 ρ) = val1

(value-of (zero?-exp exp1) ρ)

=

{
(bool-val #t) if (expval->num val1) = 0
(bool-val #f) if (expval->num val1) �= 0

(zero?-exp (exp1)
(let ((val1 (value-of exp1 env)))
(let ((num1 (expval->num val1)))

(if (zero? num1)
(bool-val #t)
(bool-val #f)))))

(value-of exp1 ρ) = val1

(value-of (if-exp exp1 exp2 exp3) ρ)

=

{
(value-of exp2 ρ) if (expval->bool val1) = #t
(value-of exp3 ρ) if (expval->bool val1) = #f

(if-exp (exp1 exp2 exp3)
(let ((val1 (value-of exp1 env)))
(if (expval->bool val1)

(value-of exp2 env)
(value-of exp3 env))))

(value-of exp1 ρ) = val1

(value-of (let-exp var exp1 body) ρ)
= (value-of body [var = val1]ρ)

(let-exp (var exp1 body)
(let ((val1 (value-of exp1 env)))
(value-of body

(extend-env var val1 env)))))))

Figure 3.9 Interpreter for the LET language, continued

Exercise 3.5 [�] Write out the derivation of figure 3.5 as a derivation tree in the style
of the one on page 5.

Exercise 3.6 [�] Extend the language by adding a new operator minus that takes one
argument, n, and returns −n. For example, the value of minus(-(minus(5),9))
should be 14.

Exercise 3.7 [�] Extend the language by adding operators for addition, multiplica-
tion, and integer quotient.

3.2 LET: A Simple Language 73

Exercise 3.8 [�] Add a numeric equality predicate equal? and numeric order predi-
cates greater? and less? to the set of operations in the defined language.

Exercise 3.9 [� �] Add list processing operations to the language, including cons,
car, cdr, null? and emptylist. A list should be able to contain any expressed
value, including another list. Give the definitions of the expressed and denoted val-
ues of the language, as in section 3.2.2. For example,

let x = 4
in cons(x,

cons(cons(-(x,1),
emptylist),

emptylist))

should return an expressed value that represents the list (4 (3)).

Exercise 3.10 [� �] Add an operation list to the language. This operation should
take any number of arguments, and return an expressed value containing the list of
their values. For example,

let x = 4
in list(x, -(x,1), -(x,3))

should return an expressed value that represents the list (4 3 1).

Exercise 3.11 [�] In a real language, one might have many operators such as those in
the preceding exercises. Rearrange the code in the interpreter so that it is easy to add
new operators.

Exercise 3.12 [�] Add to the defined language a facility that adds a cond expression.
Use the grammar

Expression ::= cond {Expression ==> Expression}∗ end

In this expression, the expressions on the left-hand sides of the ==>’s are evaluated in
order until one of them returns a true value. Then the value of the entire expression
is the value of the corresponding right-hand expression. If none of the tests succeeds,
the expression should report an error.

Exercise 3.13 [�] Change the values of the language so that integers are the only
expressed values. Modify if so that the value 0 is treated as false and all other values
are treated as true. Modify the predicates accordingly.

Exercise 3.14 [� �] As an alternative to the preceding exercise, add a new nonter-
minal Bool-exp of boolean expressions to the language. Change the production for
conditional expressions to say

Expression ::= if Bool-exp then Expression else Expression

Write suitable productions for Bool-exp and implement value-of-bool-exp.
Where do the predicates of exercise 3.8 wind up in this organization?

74 3 Expressions

Exercise 3.15 [�] Extend the language by adding a new operation print that takes
one argument, prints it, and returns the integer 1. Why is this operation not express-
ible in our specification framework?

Exercise 3.16 [� �] Extend the language so that a let declaration can declare an arbi-
trary number of variables, using the grammar

Expression ::= let {Identifier = Expression}∗ in Expression

As in Scheme’s let, each of the right-hand sides is evaluated in the current environ-
ment, and the body is evaluated with each new variable bound to the value of its
associated right-hand side. For example,

let x = 30
in let x = -(x,1)

y = -(x,2)
in -(x,y)

should evaluate to 1.

Exercise 3.17 [� �] Extend the language with a let∗ expression that works like
Scheme’s let∗, so that

let x = 30
in let∗ x = -(x,1) y = -(x,2)

in -(x,y)

should evaluate to 2.

Exercise 3.18 [� �] Add an expression to the defined language:

Expression ::= unpack {Identifier}∗ = Expression in Expression

so that unpack x y z = lst in ... binds x, y, and z to the elements of lst if
lst is a list of exactly three elements, and reports an error otherwise. For example,
the value of

let u = 7
in unpack x y = cons(u,cons(3,emptylist))

in -(x,y)

should be 4.

3.3 PROC: A Language with Procedures

So far our language has only the operations that were included in the original
language. For our interpreted language to be at all useful, we must allow
new procedures to be created. We call the new language PROC.

3.3 PROC: A Language with Procedures 75

We will follow the design of Scheme, and let procedures be expressed val-
ues in our language, so that

ExpVal = Int+Bool+Proc
DenVal = Int+Bool+Proc

where Proc is a set of values representing procedures. We will think of Proc
as an abstract data type. We consider its interface and specification below.

We will also need syntax for procedure creation and calling. This is given
by the productions

Expression ::= proc (Identifier) Expression
proc-exp (var body)

Expression ::= (Expression Expression)
call-exp (rator rand)

In (proc-exp var body), the variable var is the bound variable or formal
parameter. In a procedure call (call-exp exp1 exp2), the expression exp1

is the operator and exp2 is the operand or actual parameter. We use the word
argument to refer to the value of an actual parameter.

Here are two simple programs in this language.

let f = proc (x) -(x,11)
in (f (f 77))

(proc (f) (f (f 77))
proc (x) -(x,11))

The first program creates a procedure that subtracts 11 from its argument.
It calls the resulting procedure f, and then applies f twice to 77, yielding the
answer 55. The second program creates a procedure that takes its argument
and applies it twice to 77. The program then applies this procedure to the
subtract-11 procedure. The result is again 55.

We now turn to the data type Proc. Its interface consists of the constructor
procedure, which tells how to build a procedure value, and the observer
apply-procedure, which tells how to apply a procedure value.

Our next task is to determine what information must be included in a value
representing a procedure. To do this, we consider what happens when we
write a proc expression in an arbitrary position in our program.

The lexical scope rule tells us that when a procedure is applied, its body
is evaluated in an environment that binds the formal parameter of the pro-
cedure to the argument of the call. Variables occurring free in the procedure
should also obey the lexical binding rule. Consider the expression

76 3 Expressions

let x = 200
in let f = proc (z) -(z,x)

in let x = 100
in let g = proc (z) -(z,x)

in -((f 1), (g 1))

Here we evaluate the expression proc (z) -(z,x) twice. The first time
we do it, x is bound to 200, so by the lexical scope rule, the result is a proce-
dure that subtracts 200 from its argument. We name this procedure f. The
second time we do it, x is bound to 100, so the resulting procedure should
subtract 100 from its argument. We name this procedure g.

These two procedures, created from identical expressions, must behave
differently. We conclude that the value of a proc expression must depend
in some way on the environment in which it is evaluated. Therefore the
constructor procedure must take three arguments: the bound variable, the
body, and the environment. The specification for a proc expression is

(value-of (proc-exp var body) ρ)
= (proc-val (procedure var body ρ))

where proc-val is a constructor, like bool-val or num-val, that builds
an expressed value from a Proc.

At a procedure call, we want to find the value of the operator and the
operand. If the value of the operator is a proc-val, then we want to apply
it to the value of the operand.

(value-of (call-exp rator rand) ρ)
= (let ((proc (expval->proc (value-of rator ρ)))

(arg (value-of rand ρ)))
(apply-procedure proc arg))

Here we rely on a tester expval->proc, like expval->num, to test whether
the value of (value-of rator ρ), an expressed value, was constructed by
proc-val, and if so to extract the underlying procedure.

Last, we consider what happens when apply-procedure is invoked. As
we have seen, the lexical scope rule tells us that when a procedure is applied,
its body is evaluated in an environment that binds the formal parameter of
the procedure to the argument of the call. Furthermore any other variables
must have the same values they had at procedure-creation time. Therefore
these procedures should satisfy the condition

(apply-procedure (procedure var body ρ) val)
= (value-of body [var=val]ρ)

3.3 PROC: A Language with Procedures 77

3.3.1 An Example

Let’s do an example to show how the pieces of the specification fit together.
This is a calculation using the specification, not the implementation, since we
have not yet written down the implementation of procedures. Let ρ be any
environment.

(value-of
<<let x = 200

in let f = proc (z) -(z,x)
in let x = 100

in let g = proc (z) -(z,x)
in -((f 1), (g 1))>>

ρ)

= (value-of
<<let f = proc (z) -(z,x)

in let x = 100
in let g = proc (z) -(z,x)

in -((f 1), (g 1))>>
[x=200�]ρ)

= (value-of
<<let x = 100

in let g = proc (z) -(z,x)
in -((f 1), (g 1))>>

[f=(proc-val (procedure z <<-(z,x)>> [x=200�]ρ))]
[x=200�]ρ)

= (value-of
<<let g = proc (z) -(z,x)

in -((f 1), (g 1))>>
[x=100�]
[f=(proc-val (procedure z <<-(z,x)>> [x=200�]ρ))]
[x=200�]ρ)

78 3 Expressions

= (value-of
<<-((f 1), (g 1))>>
[g=(proc-val (procedure z <<-(z,x)>>

[x=100�][f=...][x=200�]ρ))]
[x=100�]
[f=(proc-val (procedure z <<-(z,x)>> [x=200�]ρ))]
[x=200�]ρ)

= (-
(value-of <<(f 1)>>
[g=(proc-val (procedure z <<-(z,x)>>

[x=100�][f=...][x=200�]ρ))]
[x=100�]
[f=(proc-val (procedure z <<-(z,x)>> [x=200�]ρ))]
[x=200�]ρ)

(value-of <<(g 1)>>
[g=(proc-val (procedure z <<-(z,x)>>

[x=100�][f=...][x=200�]ρ))]
[x=100�]
[f=(proc-val (procedure z <<-(z,x)>> [x=200�]ρ))]
[x=200�]ρ))�

= (-
(apply-procedure
(procedure z <<-(z,x)>> [x=200�]ρ)
1�)

(apply-procedure
(procedure z <<-(z,x)>> [x=100�][f=...][x=200�]ρ)
1�))�

= (-
(value-of <<-(z,x)>> [z=1�][x=200�]ρ)
(value-of <<-(z,x)>> [z=1�][x=100�][f=...][x=200�]ρ))�

= (- -199 -99)�

= -100�

Here f is bound to a procedure that subtracts 200 from its argument, and
g is bound to a procedure that subtracts 100 from its argument, so the value
of (f 1) is −199 and the value of (g 1) is −99.

3.3 PROC: A Language with Procedures 79

3.3.2 Representing Procedures

According to the recipe described in section 2.2.3, we can employ a procedu-
ral representation for procedures by their action under apply-procedure.
To do this we define procedure to have a value that is an implementation-
language procedure that expects an argument, and returns the value
required by the specification

(apply-procedure (procedure var body ρ) val)
= (value-of body (extend-env var val ρ))

Therefore the entire implementation is

proc? : SchemeVal → Bool
(define proc?

(lambda (val)
(procedure? val)))

procedure : Var × Exp × Env → Proc
(define procedure

(lambda (var body env)
(lambda (val)
(value-of body (extend-env var val env)))))

apply-procedure : Proc × ExpVal → ExpVal
(define apply-procedure

(lambda (proc1 val)
(proc1 val)))

The function proc?, as defined here, is somewhat inaccurate, since not
every Scheme procedure is a possible procedure in our language. We need it
only for defining the data type expval.

Alternatively, we could use a data structure representation like that of sec-
tion 2.2.2.

proc? : SchemeVal → Bool
procedure : Var × Exp × Env → Proc
(define-datatype proc proc?

(procedure
(var identifier?)
(body expression?)
(saved-env environment?)))

apply-procedure : Proc × ExpVal → ExpVal
(define apply-procedure

(lambda (proc1 val)
(cases proc proc1
(procedure (var body saved-env)

(value-of body (extend-env var val saved-env))))))

80 3 Expressions

These data structures are often called closures, because they are self-
contained: they contain everything the procedure needs in order to be
applied. We sometimes say the procedure is closed over or closed in its creation
environment.

Each of these implementations evidently satisfies the specification for the
procedure interface.

In either implementation, we add an alternative to the data type expval

(define-datatype expval expval?
(num-val
(num number?))

(bool-val
(bool boolean?))

(proc-val
(proc proc?)))

and we need to add two new clauses to value-of

(proc-exp (var body)
(proc-val (procedure var body env)))

(call-exp (rator rand)
(let ((proc (expval->proc (value-of rator env)))

(arg (value-of rand env)))
(apply-procedure proc arg)))

Reminder: be sure to write down specifications for each language extension. See the
note on page 70.

Exercise 3.19 [�] In many languages, procedures must be created and named at the
same time. Modify the language of this section to have this property by replacing the
proc expression with a letproc expression.

Exercise 3.20 [�] In PROC, procedures have only one argument, but one can get the
effect of multiple argument procedures by using procedures that return other proce-
dures. For example, one might write code like

let f = proc (x) proc (y) ...
in ((f 3) 4)

This trick is called Currying, and the procedure is said to be Curried. Write a Curried
procedure that takes two arguments and returns their sum. You can write x + y in
our language by writing −(x,−(0, y)).

Exercise 3.21 [� �] Extend the language of this section to include procedures with
multiple arguments and calls with multiple operands, as suggested by the grammar

Expression ::= proc ({Identifier}∗(,)) Expression
Expression ::= (Expression {Expression}∗)

3.3 PROC: A Language with Procedures 81

Exercise 3.22 [� � �] The concrete syntax of this section uses different syntax for a
built-in operation, such as difference, from a procedure call. Modify the concrete
syntax so that the user of this language need not know which operations are built-in
and which are defined procedures. This exercise may range from very easy to hard,
depending on the parsing technology being used.

Exercise 3.23 [� �] What is the value of the following PROC program?

let makemult = proc (maker)
proc (x)
if zero?(x)
then 0
else -(((maker maker) -(x,1)), -4)

in let times4 = proc (x) ((makemult makemult) x)
in (times4 3)

Use the tricks of this program to write a procedure for factorial in PROC. As a hint,
remember that you can use Currying (exercise 3.20) to define a two-argument proce-
dure times.

Exercise 3.24 [� �] Use the tricks of the program above to write the pair of mutually
recursive procedures, odd and even, as in exercise 3.32.

Exercise 3.25 [�] The tricks of the previous exercises can be generalized to show that
we can define any recursive procedure in PROC. Consider the following bit of code:

let makerec = proc (f)
let d = proc (x)

proc (z) ((f (x x)) z)
in proc (n) ((f (d d)) n)

in let maketimes4 = proc (f)
proc (x)
if zero?(x)
then 0
else -((f -(x,1)), -4)

in let times4 = (makerec maketimes4)
in (times4 3)

Show that it returns 12.

Exercise 3.26 [� �] In our data-structure representation of procedures, we have kept
the entire environment in the closure. But of course all we need are the bindings for
the free variables. Modify the representation of procedures to retain only the free
variables.

Exercise 3.27 [�] Add a new kind of procedure called a traceproc to the language.
A traceproc works exactly like a proc, except that it prints a trace message on
entry and on exit.

82 3 Expressions

Exercise 3.28 [� �] Dynamic binding (or dynamic scoping) is an alternative design for
procedures, in which the procedure body is evaluated in an environment obtained by
extending the environment at the point of call. For example in

let a = 3
in let p = proc (x) -(x,a)

a = 5
in -(a,(p 2))

the a in the procedure body would be bound to 5, not 3. Modify the language to use
dynamic binding. Do this twice, once using a procedural representation for proce-
dures, and once using a data-structure representation.

Exercise 3.29 [� �] Unfortunately, programs that use dynamic binding may be excep-
tionally difficult to understand. For example, under lexical binding, consistently
renaming the bound variables of a procedure can never change the behavior of a pro-
gram: we can even remove all variables and replace them by their lexical addresses,
as in section 3.6. But under dynamic binding, this transformation is unsafe.

For example, under dynamic binding, the procedure proc (z) a returns the value
of the variable a in its caller’s environment. Thus, the program

let a = 3
in let p = proc (z) a

in let f = proc (x) (p 0)
in let a = 5

in (f 2)

returns 5, since a’s value at the call site is 5. What if f’s formal parameter were a?

3.4 LETREC: A Language with Recursive Procedures

We now define a new language LETREC, which adds recursion to our lan-
guage. Since our language has only one-argument procedures, we make our
life simpler by having our letrec expressions declare only a single one-
argument procedure, for example

letrec double(x)
= if zero?(x) then 0 else -((double -(x,1)), -2)

in (double 6)

The left-hand side of a recursive declaration is the name of the recursive
procedure and its bound variable. To the right of the = is the procedure body.
The production for this is

Expression ::= letrec Identifier (Identifier) = Expression in Expression

letrec-exp (p-name b-var p-body letrec-body)

3.4 LETREC: A Language with Recursive Procedures 83

The value of a letrec expression is the value of the body in an environ-
ment that has the desired behavior:

(value-of
(letrec-exp proc-name bound-var proc-body letrec-body)
ρ)

= (value-of
letrec-body
(extend-env-rec proc-name bound-var proc-body ρ))

Here we have added a new procedure extend-env-rec to the environ-
ment interface. But we still need to answer the question: What is the desired
behavior of (extend-env-rec proc-name bound-var proc-body ρ)?

We specify the behavior of this environment as follows: Let ρ1 be the envi-
ronment produced by (extend-env-rec proc-name bound-var proc-body
ρ). Then what should (apply-env ρ1 var) return?

1. If the variable var is the same as proc-name, then (apply-env ρ1 var)
should produce a closure whose bound variable is bound-var, whose body
is proc-body, and with an environment in which proc-name is bound to this
procedure. But we already have such an environment, namely ρ1 itself!
So

(apply-env ρ1 proc-name)
= (proc-val (procedure bound-var proc-body ρ1))

2. If var is not the same as proc-name, then

(apply-env ρ1 var)= (apply-env ρ var)

Figures 3.10 and 3.11 show an example. There in the last line of figure 3.11,
the recursive call to double finds the original double procedure, as desired.

We can implement extend-env-rec in any way that satisfies these
requirements. We’ll do it here for the abstract-syntax representation. Some
other implementation strategies are discussed in the exercises.

In an abstract-syntax representation, we add a new variant for an
extend-env-rec in figure 3.12. The env on the next-to-last line of
apply-env corresponds to ρ1 in the discussion above.

Exercise 3.30 [�] What is the purpose of the call to proc-val on the next-to-last line
of apply-env?

Exercise 3.31 [�] Extend the language above to allow the declaration of a recursive
procedure of possibly many arguments, as in exercise 3.21.

84 3 Expressions

(value-of <<letrec double(x) = if zero?(x)
then 0
else -((double -(x,1)), -2)

in (double 6)>> ρ0)

= (value-of <<(double 6)>>
(extend-env-rec double x <<if zero?(x) ...>> ρ0))

= (apply-procedure
(value-of <<double>> (extend-env-rec double x

<<if zero?(x) ...>> ρ0))
(value-of <<6>> (extend-env-rec double x

<<if zero?(x) ...>> ρ0)))

= (apply-procedure
(procedure x <<if zero?(x) ...>>
(extend-env-rec double x <<if zero?(x) ...>> ρ0))

6�)

= (value-of
<<if zero?(x) ...>>

[x=6�](extend-env-rec
double x <<if zero?(x) ...>> ρ0))

...

= (-
(value-of
<<(double -(x,1))>>
[x=6�](extend-env-rec

double x <<if zero?(x) ...>> ρ0))
-2)

Figure 3.10 A calculation with extend-env-rec

Exercise 3.32 [� �] Extend the language above to allow the declaration of any number
of mututally recursive unary procedures, for example:

letrec
even(x) = if zero?(x) then 1 else (odd -(x,1))
odd(x) = if zero?(x) then 0 else (even -(x,1))

in (odd 13)

3.4 LETREC: A Language with Recursive Procedures 85

= (-
(apply-procedure

(value-of
<<double>>
[x=6�](extend-env-rec

double x <<if zero?(x) ...>> ρ0))
(value-of
<<-(x,1)>>
[x=6�](extend-env-rec

double x <<if zero?(x) ...>> ρ0)))
-2)

= (-
(apply-procedure

(procedure x <<if zero?(x) ...>>
(extend-env-rec double x <<if zero?(x) ...>> ρ0))

5�)
-2)

= ...

Figure 3.11 A calculation with extend-env-rec, cont’d.

Exercise 3.33 [� �] Extend the language above to allow the declaration of any num-
ber of mutually recursive procedures, each of possibly many arguments, as in exer-
cise 3.21.

Exercise 3.34 [� � �] Implement extend-env-rec in the procedural representation
of environments from section 2.2.3.

Exercise 3.35 [�] The representations we have seen so far are inefficient, because they
build a new closure every time the procedure is retrieved. But the closure is the same
every time. We can build the closures only once, by putting the value in a vector of
length 1 and building an explicit circular structure, like

86 3 Expressions

(define-datatype environment environment?
(empty-env)
(extend-env
(var identifier?)
(val expval?)
(env environment?))

(extend-env-rec
(p-name identifier?)
(b-var identifier?)
(body expression?)
(env environment?)))

(define apply-env
(lambda (env search-var)
(cases environment env

(empty-env ()
(report-no-binding-found search-var))

(extend-env (saved-var saved-val saved-env)
(if (eqv? saved-var search-var)
saved-val
(apply-env saved-env search-var)))

(extend-env-rec (p-name b-var p-body saved-env)
(if (eqv? search-var p-name)
(proc-val (procedure b-var p-body env))
(apply-env saved-env search-var))))))

Figure 3.12 extend-env-rec added to environments.

Here’s the code to build this data structure.

(define extend-env-rec
(lambda (p-name b-var body saved-env)
(let ((vec (make-vector 1)))

(let ((new-env (extend-env p-name vec saved-env)))
(vector-set! vec 0
(proc-val (procedure b-var body new-env)))

new-env))))

Complete the implementation of this representation by modifying the definitions of
the environment data type and apply-env accordingly. Be sure that apply-env
always returns an expressed value.

3.5 Scoping and Binding of Variables 87

Exercise 3.36 [� �] Extend this implementation to handle the language from exercise
3.32.

Exercise 3.37 [�] With dynamic binding (exercise 3.28), recursive procedures may be
bound by let; no special mechanism is necessary for recursion. This is of histori-
cal interest; in the early years of programming language design other approaches to
recursion, such as those discussed in section 3.4, were not widely understood. To
demonstrate recursion via dynamic binding, test the program

let fact = proc (n) add1(n)
in let fact = proc (n)

if zero?(n)
then 1
else *(n,(fact -(n,1)))

in (fact 5)

using both lexical and dynamic binding. Write the mutually recursive procedures
even and odd as in section 3.4 in the defined language with dynamic binding.

3.5 Scoping and Binding of Variables

We have now seen a variety of situations in which variables are declared and
used. We now discuss these ideas in a more systematic way.

In most programming languages, variables may appear in two different
ways: as references or as declarations. A variable reference is a use of the vari-
able. For example, in the Scheme expression

(f x y)

all the variables, f, x, and y, appear as references. However, in

(lambda (x) (+ x 3))

or

(let ((x (+ y 7))) (+ x 3))

the first occurrence of x is a declaration: it introduces the variable as a name
for some value. In the lambda expression, the value of the variable will be
supplied when the procedure is called. In the let expression, the value of
the variable is obtained from the value of the expression (+ y 7).

We say that a variable reference is bound by the declaration with which it is
associated, and that it is bound to its value. We have already seen examples
of a variable being bound by a declaration, in section 1.2.4.

88 3 Expressions

Figure 3.13 A simple contour diagram

Declarations in most programming languages have a limited scope, so that
the same variable name may be used for different purposes in different parts
of a program. For example, we have repeatedly used lst as a bound vari-
able, and in each case its scope was limited to the body of the corresponding
lambda expression.

Every programming language must have some rules to determine the dec-
laration to which each variable reference refers. These rules are typically
called scoping rules. The portion of the program in which a declaration is
valid is called the scope of the declaration.

We can determine which declaration is associated with each variable use
without executing the program. Properties like this, which can be computed
without executing the program, are called static properties.

To find which declaration corresponds to a given use of a variable, we
search outward from the use until we find a declaration of the variable. Here
is a simple example in Scheme.

(let ((x 3) Call this x1
(y 4))

(+ (let ((x Call this x2
(+ y 5)))

(* x y)) Here x refers to x2
x)) Here x refers to x1

3.5 Scoping and Binding of Variables 89

In this example, the inner x is bound to 9, so the value of the expression is

(let ((x 3)
(y 4))

(+ (let ((x
(+ y 5)))

(* x y))
x))

= (+ (let ((x
(+ 4 5)))

(* x 4))
3)

= (+ (let ((x 9))
(* x 4))

3)

= (+ 36
3)

= 39

Scoping rules like this are called lexical scoping rules, and the variables
declared in this way are called lexical variables.

Under lexical scoping, we can create a hole in a scope by redeclaring a
variable. Such an inner declaration shadows the outer one. For instance, in
the example above, the inner x shadows the outer one in the multiplication
(* x y).

Lexical scopes are nested: each scope lies entirely within another scope.
We can illustrate this with a contour diagram. Figure 3.13 shows the contour
diagram for the example above. A box surrounds each scope, and a vertical
line connects each declaration to its scope.

Figure 3.14 shows a more complicated program with the contours drawn
in. Here there are three occurrences of the expression (+ x y z), on lines
5, 7, and 8. Line 5 is within the scope of x2 and z2, which is within the scope
of z1, which is within the scope of x1 and y1. So at line 5, x refers to x2, y
refers to y1, and z refers to z2. Line 7 is within the scope of x4 and y2, which
is within the scope of x2 and z2, which is within the scope of z1, which is
within the scope of x1 and y1. So at line 7, x refers to x4, y refers to y2, and
z refers to z2. Last, line 8 is within the scope of x3, which is within the scope
of x2 and z2, which is within the scope of z1, which is within the scope of
x1 and y1. So at line 8, x refers to x3, y refers to y1, and z refers to z2.

90 3 Expressions

Figure 3.14 A more complicated contour diagram

The association between a variable and its value is called a binding. For our
language, we can look at the specification to see how the binding is created.

A variable declared by a proc is bound when the procedure is applied.

(apply-procedure (procedure var body ρ) val)
= (value-of body (extend-env var val ρ))

A let-variable is bound by the value of its right-hand side.

(value-of (let-exp var val body) ρ)
= (value-of body (extend-env var val ρ))

A variable declared by a letrec is bound using its right-hand side as
well.

(value-of
(letrec-exp proc-name bound-var proc-body letrec-body)
ρ)

= (value-of
letrec-body
(extend-env-rec proc-name bound-var proc-body ρ))

The extent of a binding is the time interval during which the binding is
maintained. In our little language, as in Scheme, all bindings have semi-
infinite extent, meaning that once a variable gets bound, that binding must
be maintained indefinitely (at least potentially). This is because the bind-
ing might be hidden inside a closure that is returned. In languages with
semi-infinite extent, the garbage collector collects bindings when they are no
longer reachable. This is only determinable at run-time, so we say that this
is a dynamic property.

3.6 Eliminating Variable Names 91

Regrettably, “dynamic” is sometimes used to mean “during the evalua-
tion of an expression” but other times is used to mean “not calculable in
advance.” If we did not allow a procedure to be used as the value of a let,
then the let-bindings would expire at the end of the evaluation of the let
body. This is called dynamic extent, and it is a static property. Because the
extent is a static property, we can predict exactly when a binding can be dis-
carded. Dynamic binding, as in exercise 3.28 et seq., behaves similarly.

3.6 Eliminating Variable Names

Execution of the scoping algorithm may then be viewed as a journey out-
ward from a variable reference. In this journey a number of contours may be
crossed before arriving at the associated declaration. The number of contours
crossed is called the lexical (or static) depth of the variable reference. It is cus-
tomary to use “zero-based indexing,” thereby not counting the last contour
crossed. For example, in the Scheme expression

(lambda (x)
((lambda (a)

(x a))
x))

the reference to x on the last line and the reference to a have lexical depth
zero, while the reference to x in the third line has lexical depth one.

We could, therefore, get rid of variable names entirely, and write some-
thing like

(nameless-lambda
((nameless-lambda

(#1 #0))
#0))

Here each nameless-lambda declares a new anonymous variable, and
each variable reference is replaced by its lexical depth; this number uniquely
identifies the declaration to which it refers. These numbers are called lexical
addresses or de Bruijn indices. Compilers routinely calculate the lexical address
of each variable reference. Once this has been done, the variable names may
be discarded unless they are required to provide debugging information.

This way of recording the information is useful because the lexical address
predicts just where in the environment any particular variable will be found.

92 3 Expressions

Consider the expression

let x = exp1

in let y = exp2

in -(x,y)

in our language. In the difference expression, the lexical depths of y and x
are 0 and 1, respectively.

Now assume that the values of exp1 and exp2, in the appropriate environ-
ments, are val1 and val2. Then the value of this expression is

(value-of
<<let x = exp1

in let y = exp2

in -(x,y)>>
ρ)

=
(value-of

<<let y = exp2

in -(x,y)>>
[x=val1]ρ)

=
(value-of

<<-(x,y)>>
[y=val2][x=val1]ρ)

so that when the difference expression is evaluated, y is at depth 0 and x is
at depth 1, just as predicted by their lexical depths.

If we are using an association-list representation of environments (see exer-
cise 2.5), then the environment will look like

val1x

saved−env

y val2

so that the values of x and y will be found by taking either 1 cdr or 0 cdrs in
the environment, regardless of the values val1 and val2.

The same thing works for procedure bodies. Consider

let a = 5
in proc (x) -(x,a)

In the body of the procedure, x is at lexical depth 0 and a is at depth 1.

3.7 Implementing Lexical Addressing 93

The value of this expression is

(value-of
<<let a = 5 in proc (x) -(x,a)>>
ρ)

= (value-of <<proc (x) -(x,a)>>
(extend-env a 5� ρ))

= (proc-val (procedure x <<-(x,a)>> [a=5�]ρ))

The body of this procedure can only be evaluated by apply-procedure:

(apply-procedure
(procedure x <<-(x,a)>> [a=5�]ρ)
7�)

= (value-of <<-(x,a)>>
[x=7�][a=5�]ρ)

So again every variable is found in the environment at the place predicted
by its lexical depth.

3.7 Implementing Lexical Addressing

We now implement the lexical-address analysis we sketched above. We
write a procedure translation-of-program that takes a program and
removes all the variables from the declarations, and replaces every variable
reference by its lexical depth.

For example, the program

let x = 37
in proc (y)

let z = -(y,x)
in -(x,y)

is translated to

#(struct:a-program
#(struct:nameless-let-exp

#(struct:const-exp 37)
#(struct:nameless-proc-exp

#(struct:nameless-let-exp
#(struct:diff-exp

#(struct:nameless-var-exp 0)
#(struct:nameless-var-exp 1))

#(struct:diff-exp
#(struct:nameless-var-exp 2)
#(struct:nameless-var-exp 1))))))

We then write a new version of value-of-program that will find the value
of such a nameless program, without putting variables in the environment.

94 3 Expressions

3.7.1 The Translator

We are writing a translator, so we need to know the source language
and the target language. The target language will have things like
nameless-var-exp and nameless-let-exp that were not in the source
language, and it will lose the things in the source language that these con-
structs replace, like var-exp and let-exp.

We can either write out define-datatype’s for each language, or we can
set up a single define-datatype that includes both. Since we are using
SLLGEN as our front end, it is easier to do the latter. We add to the SLLGEN
grammar the productions

Expression ::= %lexref number
nameless-var-exp (num)

Expression ::= %let Expression in Expression
nameless-let-exp (exp1 body)

Expression ::= %lexproc Expression
nameless-proc-exp (body)

We use names starting with % for these new constructs because % is nor-
mally the comment character in our language.

Our translator will reject any program that has one of these new name-
less constructs (nameless-var-exp, nameless-let-exp, or nameless-
proc-exp), and our interpreter will reject any program that has one of the
old nameful constructs (var-exp, let-exp, or proc-exp) that are sup-
posed to be replaced.

To calculate the lexical address of any variable reference, we need to know
the scopes in which it is enclosed. This is context information, so it should be
like the inherited attributes in section 1.3.

So translation-of will take two arguments: an expression and a static
environment. The static environment will be a list of variables, representing
the scopes within which the current expression lies. The variable declared in
the innermost scope will be the first element of the list.

For example, when we translate the last line of the example above, the
static environment should be

(z y x)

So looking up a variable in the static environment means finding its position
in the static environment, which gives a lexical address: looking up x will
give 2, looking up y will give 1, and looking up z will give 0.

3.7 Implementing Lexical Addressing 95

Senv = Listof(Sym)
Lexaddr = N

empty-senv : () → Senv
(define empty-senv

(lambda ()
’()))

extend-senv : Var × Senv → Senv
(define extend-senv

(lambda (var senv)
(cons var senv)))

apply-senv : Senv × Var → Lexaddr
(define apply-senv

(lambda (senv var)
(cond
((null? senv)
(report-unbound-var var))

((eqv? var (car senv))
0)

(else
(+ 1 (apply-senv (cdr senv) var))))))

Figure 3.15 Implementation of static environments

Entering a new scope will mean adding a new element to the static envi-
ronment. We introduce a procedure extend-senv to do this.

Since the static environment is just a list of variables, these procedures are
easy to implement and are shown in figure 3.15.

For the translator, we have two procedures, translation-of, which
handles expressions, and translation-of-program, which handles pro-
grams.

We are trying to translate an expression e which is sitting inside the decla-
rations represented by senv. To do this, we recursively copy the tree, as we
did in exercises 1.33 or 2.26, except that

1. Every var-exp is replaced by a nameless-var-exp with the right lex-
ical address, which we compute by calling apply-senv.

96 3 Expressions

2. Every let-exp is replaced by a nameless-let-exp. The right-hand
side of the new expression will be the translation of the right-hand side
of the old expression. This is in the same scope as the original, so we
translate it in the same static environment senv. The body of the new
expression will be the translation of the body of the old expression. But
the body now lies in a new scope, with the additional bound variable var.
So we translate the body in the static environment (extend-senv var
senv).

3. Every proc-exp is replaced by a nameless-proc-exp, with the body
translated with respect to the new scope, represented by the static envi-
ronment (extend-senv var senv).

The code for translation-of is shown in figure 3.16.
The procedure translation-of-program runs translation-of in

a suitable initial static environment.

translation-of-program : Program → Nameless-program
(define translation-of-program

(lambda (pgm)
(cases program pgm

(a-program (exp1)
(a-program
(translation-of exp1 (init-senv)))))))

init-senv : () → Senv
(define init-senv

(lambda ()
(extend-senv ’i

(extend-senv ’v
(extend-senv ’x
(empty-senv))))))

3.7.2 The Nameless Interpreter

Our interpreter takes advantage of the predictions of the lexical-address ana-
lyzer to avoid explicitly searching for variables at run time.

Since there are no more variables in our programs, we won’t be able to put
variables in our environments, but since we know exactly where to look in
each environment, we don’t need them!

3.7 Implementing Lexical Addressing 97

translation-of : Exp × Senv → Nameless-exp
(define translation-of

(lambda (exp senv)
(cases expression exp
(const-exp (num) (const-exp num))
(diff-exp (exp1 exp2)

(diff-exp
(translation-of exp1 senv)
(translation-of exp2 senv)))

(zero?-exp (exp1)
(zero?-exp

(translation-of exp1 senv)))
(if-exp (exp1 exp2 exp3)

(if-exp
(translation-of exp1 senv)
(translation-of exp2 senv)
(translation-of exp3 senv)))

(var-exp (var)
(nameless-var-exp

(apply-senv senv var)))
(let-exp (var exp1 body)

(nameless-let-exp
(translation-of exp1 senv)
(translation-of body
(extend-senv var senv))))

(proc-exp (var body)
(nameless-proc-exp

(translation-of body
(extend-senv var senv))))

(call-exp (rator rand)
(call-exp

(translation-of rator senv)
(translation-of rand senv)))

(else
(report-invalid-source-expression exp)))))

Figure 3.16 The lexical-address translator

98 3 Expressions

Our top-level procedure will be run:

run : String → ExpVal
(define run

(lambda (string)
(value-of-program

(translation-of-program
(scan&parse string)))))

Instead of having full-fledged environments, we will have nameless envi-
ronments, with the following interface:

nameless-environment? : SchemeVal→Bool
empty-nameless-env : ()→ Nameless-env
extend-nameless-env : Expval× Nameless-env →Nameless-env
apply-nameless-env : Nameless-env × Lexaddr→DenVal

We can implement a nameless environment as a list of denoted values, so
that apply-nameless-env is simply a call to list-ref. The implemen-
tation is shown in figure 3.17.

At the last line of the example on page 93, the nameless environment will
look like

value of z value of y value of x

saved−env

Having changed the environment interface, we need to look at all the code
that depends on that interface. There are only two things in our interpreter
that use environments: procedures and value-of.

The revised specification for procedures is just the old one with the vari-
able name removed.

(apply-procedure (procedure body ρ) val)
= (value-of body (extend-nameless-env val ρ))

We can implement this by defining

procedure : Nameless-exp × Nameless-env → Proc
(define-datatype proc proc?

(procedure
(body expression?)
(saved-nameless-env nameless-environment?)))

3.7 Implementing Lexical Addressing 99

nameless-environment? : SchemeVal → Bool
(define nameless-environment?

(lambda (x)
((list-of expval?) x)))

empty-nameless-env : () → Nameless-env
(define empty-nameless-env

(lambda ()
’()))

extend-nameless-env : ExpVal × Nameless-env → Nameless-env
(define extend-nameless-env

(lambda (val nameless-env)
(cons val nameless-env)))

apply-nameless-env : Nameless-env × Lexaddr → ExpVal
(define apply-nameless-env

(lambda (nameless-env n)
(list-ref nameless-env n)))

Figure 3.17 Nameless environments

apply-procedure : Proc × ExpVal → ExpVal
(define apply-procedure

(lambda (proc1 val)
(cases proc proc1
(procedure (body saved-nameless-env)

(value-of body
(extend-nameless-env val saved-nameless-env))))))

Now we can write value-of. Most cases are the same as in the earlier
interpreters except that where we used env we now use nameless-env.
We do have new cases, however, that correspond to var-exp, let-exp,
and proc-exp, which we replace by cases for nameless-var-exp,
nameless-let-exp, and nameless-proc-exp, respectively. The imple-
mentation is shown in figure 3.18. A nameless-var-exp gets looked up
in the environment. A nameless-let-exp evaluates its right-hand side
exp1, and then evalutes its body in an environment extended by the value of
the right-hand side. This is just what an ordinary let does, but without the
variables. A nameless-proc produces a proc, which is then applied by
apply-procedure.

100 3 Expressions

value-of : Nameless-exp × Nameless-env → ExpVal
(define value-of

(lambda (exp nameless-env)
(cases expression exp

(const-exp (num) ...as before...)
(diff-exp (exp1 exp2) ...as before...)
(zero?-exp (exp1) ...as before...)
(if-exp (exp1 exp2 exp3) ...as before...)
(call-exp (rator rand) ...as before...)

(nameless-var-exp (n)
(apply-nameless-env nameless-env n))

(nameless-let-exp (exp1 body)
(let ((val (value-of exp1 nameless-env)))
(value-of body

(extend-nameless-env val nameless-env))))

(nameless-proc-exp (body)
(proc-val
(procedure body nameless-env)))

(else
(report-invalid-translated-expression exp)))))

Figure 3.18 value-of for the nameless interpreter

Last, here’s the new value-of-program:

value-of-program : Nameless-program → ExpVal
(define value-of-program

(lambda (pgm)
(cases program pgm

(a-program (exp1)
(value-of exp1 (init-nameless-env))))))

3.7 Implementing Lexical Addressing 101

Exercise 3.38 [�] Extend the lexical address translator and interpreter to handle cond
from exercise 3.12.

Exercise 3.39 [�] Extend the lexical address translator and interpreter to handle pack
and unpack from exercise 3.18.

Exercise 3.40 [� �] Extend the lexical address translator and interpreter to handle
letrec. Do this by modifying the context argument to translation-of so that
it keeps track of not only the name of each bound variable, but also whether it was
bound by letrec or not. For a reference to a variable that was bound by a letrec,
generate a new kind of reference, called a nameless-letrec-var-exp. You can
then continue to use the nameless environment representation above, and the inter-
preter can do the right thing with a nameless-letrec-var-exp.

Exercise 3.41 [� �] Modify the lexical address translator and interpreter to handle let
expressions, procedures, and procedure calls with multiple arguments, as in exer-
cise 3.21. Do this using a nameless version of the ribcage representation of environ-
ments (exercise 2.11). For this representation, the lexical address will consist of two
nonnegative integers: the lexical depth, to indicate the number of contours crossed,
as before; and a position, to indicate the position of the variable in the declaration.

Exercise 3.42 [� � �] Modify the lexical address translator and interpreter to use the
trimmed representation of procedures from exercise 3.26. For this, you will need to
translate the body of the procedure not (extend-senv var senv), but in a new
static environment that tells exactly where each variable will be kept in the trimmed
representation.

Exercise 3.43 [� � �] The translator can do more than just keep track of the names of
variables. For example, consider the program

let x = 3
in let f = proc (y) -(y,x)

in (f 13)

Here we can tell statically that at the procedure call, f will be bound to a procedure
whose body is -(y,x), where x has the same value that it had at the procedure-
creation site. Therefore we could avoid looking up f in the environment entirely.
Extend the translator to keep track of “known procedures” and generate code that
avoids an environment lookup at the call of such a procedure.

Exercise 3.44 [� � �] In the preceding example, the only use of f is as a known pro-
cedure. Therefore the procedure built by the expression proc (y) -(y,x) is never
used. Modify the translator so that such a procedure is never constructed.

4 State

4.1 Computational Effects

So far, we have only considered the value produced by a computation. But a
computation may have effects as well: it may read, print, or alter the state of
memory or a file system. In the real world, we are always interested in effects:
if a computation doesn’t display its answer, it doesn’t do us any good!

What’s the difference between producing a value and producing an effect?
An effect is global: it is seen by the entire computation. An effect affects the
entire computation (pun intended).

We will be concerned primarily with a single effect: assignment to a loca-
tion in memory. How does assignment differ from binding? As we have
seen, binding is local, but variable assignment is potentially global. It is
about the sharing of values between otherwise unrelated portions of the com-
putation. Two procedures can share information if they both know about the
same location in memory. A single procedure can share information with a
future invocation of itself by leaving the information in a known location.

We model memory as a finite map from locations to a set of values called
the storable values. For historical reasons, we call this the store. The storable
values in a language are typically, but not always, the same as the expressed
values of the language. This choice is part of the design of a language.

A data structure that represents a location is called a reference. A location
is a place in memory where a value can be stored, and a reference is a data
structure that refers to that place. The distinction between locations and ref-
erences may be seen by analogy: a location is like a file and a reference is like
a URL. The URL refers to the file, and the file contains some data. Similarly,
a reference denotes a location, and the location contains some data.

104 4 State

References are sometimes called L-values. This name reflects the associa-
tion of such data structures with variables appearing on the left-hand side
of assignment statements. Analogously, expressed values, such as the values
of the right-hand side expressions of assignment statements, are known as
R-values.

We consider two designs for a language with a store. We call these designs
explicit references and implicit references.

4.2 EXPLICIT-REFS: A Language with Explicit References

In this design, we add references as a new kind of expressed value. So we
have

ExpVal = Int+Bool+Proc+Ref(ExpVal)
DenVal = ExpVal

Here Ref(ExpVal) means the set of references to locations that contain
expressed values.

We leave the binding structures of the language unchanged, but we add
three new operations to create and use references.

• newref, which allocates a new location and returns a reference to it.

• deref, which dereferences a reference: that is, it returns the contents of
the location that the reference represents.

• setref, which changes the contents of the location that the reference rep-
resents.

We call the resulting language EXPLICIT-REFS. Let’s write some programs
using these constructs.

Below are two procedures, even and odd. They each take an argument,
which they ignore, and return 1 or 0 depending on whether the contents
of the location x is even or odd. They communicate not by passing data
explicitly, but by changing the contents of the variable they share.

This program determines whether or not 13 is odd, and therefore returns
1. The procedures even and odd do not refer to their arguments; instead
they look at the contents of the location to which x is bound.

4.2 EXPLICIT-REFS: A Language with Explicit References 105

let x = newref(0)
in letrec even(dummy)

= if zero?(deref(x))
then 1
else begin

setref(x, -(deref(x),1));
(odd 888)

end
odd(dummy)
= if zero?(deref(x))

then 0
else begin

setref(x, -(deref(x),1));
(even 888)

end
in begin setref(x,13); (odd 888) end

This program uses multideclaration letrec (exercise 3.32) and a begin
expression (exercise 4.4). A begin expression evaluates its subexpressions
in order and returns the value of the last one.

We pass a dummy argument to even and odd to stay within the frame-
work of our unary language; if we had procedures of any number of argu-
ments (exercise 3.21) we could have made these procedures of no arguments.

This style of communication is convenient when two procedures might
share many quantities; one needs to assign only to the few quantities that
change from one call to the next. Similarly, one procedure might call another
procedure not directly but through a long chain of procedure calls. They
could communicate data directly through a shared variable, without the
intermediate procedures needing to know about it. Thus communication
through a shared variable can be a kind of information hiding.

Another use of assignment is to create hidden state through the use of
private variables. Here is an example.

let g = let counter = newref(0)
in proc (dummy)

begin
setref(counter, -(deref(counter), -1));
deref(counter)

end
in let a = (g 11)

in let b = (g 11)
in -(a,b)

Here the procedure g keeps a private variable that stores the number of
times g has been called. Hence the first call to g returns 1, the second call to
g returns 2, and the entire program has the value -1.

106 4 State

Here is a picture of the environment in which g is bound.

We can think of this as the different invocations of g sharing information
with each other. This technique is used by the Scheme procedure gensym to
create unique symbols.

Exercise 4.1 [�] What would have happened had the program been instead

let g = proc (dummy)
let counter = newref(0)
in begin

setref(counter, -(deref(counter), -1));
deref(counter)

end
in let a = (g 11)

in let b = (g 11)
in -(a,b)

In EXPLICIT-REFS, we can store any expressed value, and references are
expressed values. This means we can store a reference in a location. Consider
the program

let x = newref(newref(0))
in begin

setref(deref(x), 11);
deref(deref(x))

end

4.2 EXPLICIT-REFS: A Language with Explicit References 107

This program allocates a new location containing 0. It then binds x to
a location containing a reference to the first location. Hence the value of
deref(x) is a reference to the first location. So when the program evaluates
the setref, it is the first location that is modified, and the entire program
returns 11.

4.2.1 Store-Passing Specifications

In our language, any expression may have an effect. To specify these effects,
we need to describe what store should be used for each evaluation and how
each evaluation can modify the store.

In our specifications, we use σ to range over stores. We write [l = v]σ to
mean a store just like σ, except that location l is mapped to v. When we refer
to a particular value of σ, we sometimes call it the state of the store.

We use store-passing specfications. In a store-passing specification, the store
is passed as an explicit argument to value-of and is returned as an explicit
result from value-of. Thus we write

(value-of exp1 ρ σ0) = (val1,σ1)

This asserts that expression exp1, evaluated in environment ρ and with the
store in state σ0, returns the value val1 and leaves the store in a possibly
different state σ1.

Thus we can specify an effect-free operation like const-exp by writing

(value-of (const-exp n) ρ σ) = (n,σ)

showing that the store is unchanged by evaluation of this expression.
The specification for diff-exp shows how we specify sequential behav-

ior.

(value-of exp1 ρ σ0) = (val1,σ1)
(value-of exp2 ρ σ1) = (val2,σ2)

(value-of (diff-exp exp1 exp2) ρ σ0) = (�val1�-�val2��,σ2)

Here we evaluate exp1 starting with the store in state σ0. exp1 returns value
val1, but it might also have some effects that leave the store in state σ1. We
then evaluate exp2 starting with the store in the state that exp1 left it, namely
σ1. exp2 similarly returns a value val2 and leaves the store in state σ2. Then
the entire expression returns val1 − val2 without further effect on the store,
so it leaves the store in state σ2.

108 4 State

Let’s try a conditional.

(value-of exp1 ρ σ0) = (val1,σ1)

(value-of (if-exp exp1 exp2 exp3) ρ σ0)

=
{
(value-of exp2 ρ σ1) if (expval->bool val1) = #t
(value-of exp3 ρ σ1) if (expval->bool val1) = #f

Starting in state σ0, an if-exp evaluates its test expression exp1, return-
ing the value val1 and leaving the store in state σ1. The result of the entire
expression is then either the result of exp2 or exp3, each evaluated in the
current environment ρ and in the state σ1 in which exp1 left the store.

Exercise 4.2 [�] Write down the specification for a zero?-exp.

Exercise 4.3 [�] Write down the specification for a call-exp.

Exercise 4.4 [� �] Write down the specification for a begin expresssion.

Expression ::= begin Expression {; Expression}∗ end

A begin expression may contain one or more subexpressions separated by semi-
colons. These are evaluated in order and the value of the last is returned.

Exercise 4.5 [� �] Write down the specification for list (exercise 3.10).

4.2.2 Specifying Operations on Explicit References

In EXPLICIT-REFS, we have three new operations that must be specified:
newref, deref, and setref. These are given by the grammar

Expression ::= newref (Expression)
newref-exp (exp1)

Expression ::= deref (Expression)
deref-exp (exp1)

Expression ::= setref (Expression , Expression)
setref-exp (exp1 exp2)

We can specify the behavior of these operations as follows.

(value-of exp ρ σ0) = (val,σ1) l �∈ dom(σ1)

(value-of (newref-exp exp) ρ σ0) = ((ref-val l),[l=val]σ1)

4.2 EXPLICIT-REFS: A Language with Explicit References 109

This rule says that newref-exp evaluates its operand. It extends the
resulting store by allocating a new location l and puts the value val of its
argument in that location. Then it returns a reference to a location l that is
new. This means that it is not already in the domain of σ1.

(value-of exp ρ σ0) = (l,σ1)

(value-of (deref-exp exp) ρ σ0) = (σ1(l),σ1)

This rule says that a deref-exp evaluates its operand, leaving the store
in state σ1. The value of that argument should be a reference to a location
l. The deref-exp then returns the contents of l in σ1, without any further
change to the store.

(value-of exp1 ρ σ0) = (l,σ1)
(value-of exp2 ρ σ1) = (val,σ2)

(value-of (setref-exp exp1 exp2) ρ σ0) = (23�,[l=val]σ2)

This rule says that a setref-exp evaluates its operands from left to right.
The value of the first operand must be a reference to a location l. The
setref-exp then updates the resulting store by putting the value val of
the second argument in location l. What should a setref-exp return? It
could return anything. To emphasize the arbitrary nature of this choice, we
have specified that it returns 23. Because we are not interested in the value
returned by a setref-exp, we say that this expression is executed for effect,
rather than for its value.

Exercise 4.6 [�] Modify the rule given above so that a setref-exp returns the value
of the right-hand side.

Exercise 4.7 [�] Modify the rule given above so that a setref-exp returns the old
contents of the location.

4.2.3 Implementation

The specification language we have used so far makes it easy to describe the
desired behavior of effectful computations, but it does not embody a key fact
about the store: a reference ultimately refers to a real location in a memory
that exists in the real world. Since we have only one real world, our program
can only keep track of one state σ of the store.

In our implementations, we take advantage of this fact by modeling the
store using Scheme’s own store. Thus we model an effect as a Scheme effect.

110 4 State

We represent the state of the store as a Scheme value, but we do not explic-
itly pass and return it, as the specification suggests. Instead, we keep the
state in a single global variable, to which all the procedures of the implemen-
tation have access. This is much like even/odd example, where we used
a shared location instead of passing an explicit argument. By using a sin-
gle global variable, we also use as little as possible of our understanding of
Scheme effects.

We still have to choose how to model the store as a Scheme value. We
choose the simplest possible model: we represent the store as a list of
expressed values, and a reference is a number that denotes a position in the
list. A new reference is allocated by appending a new value to the list; and
updating the store is modeled by copying over as much of the list as neces-
sary. The code is shown in figures 4.1 and 4.2.

This representation is extremely inefficient. Ordinary memory operations
require approximately constant time, but in our representation these opera-
tions require time proportional to the size of the store. No real implementa-
tion would ever do this, of course, but it suffices for our purposes.

We add a new variant, ref-val, to the data type for expressed values,
and we modify value-of-program to initialize the store before each eval-
uation.

value-of-program : Program → ExpVal
(define value-of-program

(lambda (pgm)
(initialize-store!)
(cases program pgm

(a-program (exp1)
(value-of exp1 (init-env))))))

Now we can write clauses in value-of for newref, deref, and setref.
The clauses are shown in figure 4.3.

We can instrument our system by adding some procedures that convert
environments, procedures, and stores to a more readable form, and we can
instrument our system by printing messages at key points in the code. We
also use procedures that convert environments, procedures, and stores to a
more readable form. The resulting logs give a detailed picture of our system
in action. A typical example is shown in figures 4.4 and 4.5. This trace shows,
among other things, that the arguments to the subtraction are evaluated from
left to right.

4.2 EXPLICIT-REFS: A Language with Explicit References 111

empty-store : () → Sto
(define empty-store

(lambda () ’()))

usage: A Scheme variable containing the current state
of the store. Initially set to a dummy value.

(define the-store ’uninitialized)

get-store : () → Sto
(define get-store

(lambda () the-store))

initialize-store! : () → Unspecified
usage: (initialize-store!) sets the-store to the empty store
(define initialize-store!

(lambda ()
(set! the-store (empty-store))))

reference? : SchemeVal → Bool
(define reference?

(lambda (v)
(integer? v)))

newref : ExpVal → Ref
(define newref

(lambda (val)
(let ((next-ref (length the-store)))
(set! the-store (append the-store (list val)))
next-ref)))

deref : Ref → ExpVal
(define deref

(lambda (ref)
(list-ref the-store ref)))

Figure 4.1 A naive model of the store

112 4 State

setref! : Ref × ExpVal → Unspecified
usage: sets the-store to a state like the original, but with

position ref containing val.
(define setref!

(lambda (ref val)
(set! the-store

(letrec
((setref-inner

usage: returns a list like store1, except that
position ref1 contains val.
(lambda (store1 ref1)

(cond
((null? store1)
(report-invalid-reference ref the-store))
((zero? ref1)
(cons val (cdr store1)))
(else
(cons

(car store1)
(setref-inner

(cdr store1) (- ref1 1))))))))
(setref-inner the-store ref)))))

Figure 4.2 A naive model of the store, continued

Exercise 4.8 [�] Show exactly where in our implementation of the store these opera-
tions take linear time rather than constant time.

Exercise 4.9 [�] Implement the store in constant time by representing it as a Scheme
vector. What is lost by using this representation?

Exercise 4.10 [�] Implement the begin expression as specified in exercise 4.4.

Exercise 4.11 [�] Implement list from exercise 4.5.

Exercise 4.12 [� � �] Our understanding of the store, as expressed in this interpreter,
depends on the meaning of effects in Scheme. In particular, it depends on us knowing
when these effects take place in a Scheme program. We can avoid this dependency by
writing an interpreter that more closely mimics the specification. In this interpreter,
value-of would return both a value and a store, just as in the specification. A frag-
ment of this interpreter appears in figure 4.6. We call this a store-passing interpreter.
Extend this interpreter to cover all of the language EXPLICIT-REFS.

Every procedure that might modify the store returns not just its usual value but also a
new store. These are packaged in a data type called answer. Complete this definition
of value-of.

4.3 IMPLICIT-REFS: A Language with Implicit References 113

(newref-exp (exp1)
(let ((v1 (value-of exp1 env)))

(ref-val (newref v1))))

(deref-exp (exp1)
(let ((v1 (value-of exp1 env)))

(let ((ref1 (expval->ref v1)))
(deref ref1))))

(setref-exp (exp1 exp2)
(let ((ref (expval->ref (value-of exp1 env))))

(let ((val2 (value-of exp2 env)))
(begin

(setref! ref val2)
(num-val 23)))))

Figure 4.3 value-of clauses for explicit-reference operators

Exercise 4.13 [� � �] Extend the interpreter of the preceding exercise to have proce-
dures of multiple arguments.

4.3 IMPLICIT-REFS: A Language with Implicit References

The explicit reference design gives a clear account of allocation, dereferenc-
ing, and mutation because all these operations are explicit in the program-
mer’s code.

Most programming languages take common patterns of allocation, deref-
erencing, and mutation, and package them up as part of the language. Then
the programmer need not worry about when to perform these operations,
because they are built into the language.

In this design, every variable denotes a reference. Denoted values are ref-
erences to locations that contain expressed values. References are no longer
expressed values. They exist only as the bindings of variables.

ExpVal = Int+Bool+Proc
DenVal = Ref(ExpVal)

Locations are created with each binding operation: at each procedure call,
let, or letrec.

114 4 State

> (run "
let x = newref(22)
in let f = proc (z) let zz = newref(-(z,deref(x)))

in deref(zz)
in -((f 66), (f 55))")

entering let x
newref: allocating location 0
entering body of let x with env =
((x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))
store =
((0 #(struct:num-val 22)))

entering let f
entering body of let f with env =
((f
(procedure

z
...
((x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))))

(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))
store =
((0 #(struct:num-val 22)))

entering body of proc z with env =
((z #(struct:num-val 66))
(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))
store =
((0 #(struct:num-val 22)))

Figure 4.4 Trace of an evaluation in EXPLICIT-REFS.

4.3 IMPLICIT-REFS: A Language with Implicit References 115

entering let zz
newref: allocating location 1
entering body of let zz with env =
((zz #(struct:ref-val 1))
(z #(struct:num-val 66))
(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))

store =
((0 #(struct:num-val 22)) (1 #(struct:num-val 44)))

entering body of proc z with env =
((z #(struct:num-val 55))
(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))

store =
((0 #(struct:num-val 22)) (1 #(struct:num-val 44)))

entering let zz
newref: allocating location 2
entering body of let zz with env =
((zz #(struct:ref-val 2))
(z #(struct:num-val 55))
(x #(struct:ref-val 0))
(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))

store =
((0 #(struct:num-val 22))
(1 #(struct:num-val 44))
(2 #(struct:num-val 33)))

#(struct:num-val 11)
>

Figure 4.5 Trace of an evaluation in EXPLICIT-REFS, continued

116 4 State

(define-datatype answer answer?
(an-answer
(val expval?)
(store store?)))

value-of : Exp × Env × Sto → ExpVal
(define value-of

(lambda (exp env store)
(cases expression exp

(const-exp (num)
(an-answer (num-val num) store))

(var-exp (var)
(an-answer
(apply-store store (apply-env env var))
store))

(if-exp (exp1 exp2 exp3)
(cases answer (value-of exp1 env store)
(an-answer (val new-store)

(if (expval->bool val)
(value-of exp2 env new-store)
(value-of exp3 env new-store)))))

(deref-exp (exp1)
(cases answer (value-of exp1 env store)
(an-answer (v1 new-store)

(let ((ref1 (expval->ref v1)))
(an-answer (deref ref1) new-store)))))

...)))

Figure 4.6 Store-passing interpreter for exercise 4.12

When a variable appears in an expression, we first look up the identifier in
the environment to find the location to which it is bound, and then we look
up in the store to find the value at that location. Hence we have a “two-level”
system for var-exp.

The contents of a location can be changed by a set expression. We use the
syntax

Expression ::= set Identifier = Expression
assign-exp (var exp1)

Here the Identifier is not part of an expression, so it does not get derefer-
enced. In this design, we say that variables are mutable, meaning changeable.

4.3 IMPLICIT-REFS: A Language with Implicit References 117

let x = 0
in letrec even(dummy)

= if zero?(x)
then 1
else begin

set x = -(x,1);
(odd 888)

end
odd(dummy)
= if zero?(x)

then 0
else begin

set x = -(x,1);
(even 888)

end
in begin set x = 13; (odd -888) end

let g = let count = 0
in proc (dummy)

begin
set count = -(count,-1);
count

end
in let a = (g 11)

in let b = (g 11)
in -(a,b)

Figure 4.7 odd and even in IMPLICIT-REFS

This design is called call-by-value, or implicit references. Most programming
languages, including Scheme, use some variation on this design.

Figure 4.7 has our two sample programs in this design. Because references
are no longer expressed values, we can’t make chains of references, as we did
in the last example in section 4.2.

4.3.1 Specification

We can write the rules for dereference and set easily. The environment now
always binds variables to locations, so when a variable appears as an expres-
sion, we need to dereference it:

(value-of (var-exp var) ρ σ) = (σ(ρ(var)),σ)

118 4 State

Assignment works as one might expect: we look up the left-hand side
in the environment, getting a location, we evaluate the right-hand side in
the environment, and we modify the desired location. As with setref, the
value returned by a set expression is arbitrary. We choose to have it return
the expressed value 27.

(value-of exp1 ρ σ0) = (val1,σ1)

(value-of (assign-exp var exp1) ρ σ0) = (27�,[ρ(var) = val1]σ1)

We also need to rewrite the rules for procedure call and let to show the
modified store. For procedure call, the rule becomes

(apply-procedure (procedure var body ρ) val σ)
= (value-of body [var = l]ρ [l = val]σ)

where l is a location not in the domain of σ.
The rule for (let-exp var exp1 body) is similar. The right-hand side

exp1 is evaluated, and the value of the let expression is the value of the
body, evaluated in an environment where the variable var is bound to a new
location containing the value of exp1.

Exercise 4.14 [�] Write the rule for let.

4.3.2 The Implementation

Now we are ready to modify the interpreter. In value-of, we dereference
at each var-exp, just like the rules say

(var-exp (var) (deref (apply-env env var)))

and we write the obvious code for a assign-exp

(assign-exp (var exp1)
(begin
(setref!

(apply-env env var)
(value-of exp1 env))

(num-val 27)))

What about creating references? New locations should be allocated at
every new binding. There are exactly four places in the language where new
bindings are created: in the initial environment, in a let, in a procedure call,
and in a letrec.

4.3 IMPLICIT-REFS: A Language with Implicit References 119

In the initial environment, we explicitly allocate new locations.
For let, we change the corresponding line in value-of to allocate a new

location containing the value, and to bind the variable to a reference to that
location.

(let-exp (var exp1 body)
(let ((val1 (value-of exp1 env)))

(value-of body
(extend-env var (newref val1) env))))

For a procedure call, we similarly change apply-procedure to call
newref.

apply-procedure : Proc × ExpVal → ExpVal
(define apply-procedure

(lambda (proc1 val)
(cases proc proc1
(procedure (var body saved-env)

(value-of body
(extend-env var (newref val) saved-env))))))

Last, to handle letrec, we replace the extend-env-rec clause in
apply-env to return a reference to a location containing the appropri-
ate closure. Since we are using multideclaration letrec (exercise 3.32),
extend-env-rec takes a list of procedure names, a list of bound vari-
ables, a list of procedure bodies, and a saved environment. The procedure
location takes a variable and a list of variables and returns either the posi-
tion of the variable in the list, or #f if it is not present.

(extend-env-rec (p-names b-vars p-bodies saved-env)
(let ((n (location search-var p-names)))

(if n
(newref

(proc-val
(procedure
(list-ref b-vars n)
(list-ref p-bodies n)
env)))

(apply-env saved-env search-var))))

Figure 4.8 shows a simple evaluation in IMPLICIT-REFS, using the same
instrumentation as before.

120 4 State

> (run "
let f = proc (x) proc (y)

begin
set x = -(x,-1);
-(x,y)

end
in ((f 44) 33)")
newref: allocating location 0
newref: allocating location 1
newref: allocating location 2
entering let f
newref: allocating location 3
entering body of let f with env =
((f 3) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2)))))

newref: allocating location 4
entering body of proc x with env =
((x 4) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 #(struct:num-val 44)))

newref: allocating location 5
entering body of proc y with env =
((y 5) (x 4) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 #(struct:num-val 44))
(5 #(struct:num-val 33)))

#(struct:num-val 12)
>

Figure 4.8 Sample evaluation in IMPLICIT-REFS

4.3 IMPLICIT-REFS: A Language with Implicit References 121

Exercise 4.15 [�] In figure 4.8, why are variables in the environment bound to plain
integers rather than expressed values, as in figure 4.5?

Exercise 4.16 [�] Now that variables are mutable, we can build recursive procedures
by assignment. For example

letrec times4(x) = if zero?(x)
then 0
else -((times4 -(x,1)), -4)

in (times4 3)

can be replaced by

let times4 = 0
in begin

set times4 = proc (x)
if zero?(x)
then 0
else -((times4 -(x,1)), -4);

(times4 3)
end

Trace this by hand and verify that this translation works.

Exercise 4.17 [� �] Write the rules for and implement multiargument procedures and
let expressions.

Exercise 4.18 [� �] Write the rule for and implement multiprocedure letrec expres-
sions.

Exercise 4.19 [� �] Modify the implementation of multiprocedure letrec so that
each closure is built only once, and only one location is allocated for it. This is like
exercise 3.35.

Exercise 4.20 [� �] In the language of this section, all variables are mutable, as they
are in Scheme. Another alternative is to allow both mutable and immutable variable
bindings:

ExpVal = Int+Bool+Proc
DenVal = Ref(ExpVal) + ExpVal

Variable assignment should work only when the variable to be assigned to has a
mutable binding. Dereferencing occurs implicitly when the denoted value is a refer-
ence.

Modify the language of this section so that let introduces immutable variables, as
before, but mutable variables are introduced by a letmutable expression, with syn-
tax given by

Expression ::= letmutable Identifier = Expression in Expression

122 4 State

Exercise 4.21 [� �] We suggested earlier the use of assignment to make a program
more modular by allowing one procedure to communicate information to a distant
procedure without requiring intermediate procedures to be aware of it. Very often
such an assignment should only be temporary, lasting for the execution of a pro-
cedure call. Add to the language a facility for dynamic assignment (also called fluid
binding) to accomplish this. Use the production

Expression ::= setdynamic Identifier = Expression during Expression
setdynamic-exp (var exp1 body)

The effect of the setdynamic expression is to assign temporarily the value of exp1 to
var, evaluate body, reassign var to its original value, and return the value of body. The
variable var must already be bound. For example, in

let x = 11
in let p = proc (y) -(y,x)

in -(setdynamic x = 17 during (p 22),
(p 13))

the value of x, which is free in procedure p, is 17 in the call (p 22), but is reset to 11
in the call (p 13), so the value of the expression is 5 − 2 = 3.

Exercise 4.22 [� �] So far our languages have been expression-oriented: the primary
syntactic category of interest has been expressions and we have primarily been inter-
ested in their values. Extend the language to model the simple statement-oriented
language whose specification is sketched below. Be sure to Follow the Grammar by
writing separate procedures to handle programs, statements, and expressions.

Values As in IMPLICIT-REFS.

Syntax Use the following syntax:

Program ::= Statement
Statement ::= Identifier = Expression

::= print Expression
::= {{Statement}∗(;) }

::= if Expression Statement Statement
::= while Expression Statement
::= var {Identifier}∗(,) ; Statement

The nonterminal Expression refers to the language of expressions of IMPLICIT-
REFS, perhaps with some extensions.

Semantics A program is a statement. A statement does not return a value, but acts
by modifying the store and by printing.
Assignment statements work in the usual way. A print statement evaluates its
actual parameter and prints the result. The if statement works in the usual way.
A block statement, defined in the last production for Statement, binds each of the

4.3 IMPLICIT-REFS: A Language with Implicit References 123

declared variables to an uninitialized reference and then executes the body of the
block. The scope of these bindings is the body.
Write the specification for statements using assertions like

(result-of stmt ρ σ0) = σ1

Examples Here are some examples.

(run "var x,y; {x = 3; y = 4; print +(x,y)}") % Example 1
7
(run "var x,y,z; {x = 3; % Example 2

y = 4;
z = 0;
while not(zero?(x))

{z = +(z,y); x = -(x,1)};
print z}")

12
(run " var x; {x = 3; % Example 3

print x;
var x; {x = 4; print x};
print x}")

3
4
3
(run "var f,x; {f = proc(x,y) *(x,y); % Example 4

x = 3;
print (f 4 x)}")

12

Example 3 illustrates the scoping of the block statement.

Example 4 illustrates the interaction between statements and expressions. A pro-
cedure value is created and stored in the variable f. In the last line, this procedure
is applied to the actual parameters 4 and x; since x is bound to a reference, it is
dereferenced to obtain 3.

Exercise 4.23 [�] Add to the language of exercise 4.22 read statements of the form
read var. This statement reads a nonnegative integer from the input and stores it in
the given variable.

Exercise 4.24 [�] A do-while statement is like a while statement, except that the
test is performed after the execution of the body. Add do-while statements to the
language of exercise 4.22.

Exercise 4.25 [�] Extend the block statement of the language of exercise 4.22 to allow
variables to be initialized. In your solution, does the scope of a variable include the
initializer for variables declared later in the same block statement?

124 4 State

Exercise 4.26 [� � �] Extend the solution to the preceding exercise so that procedures
declared in a single block are mutually recursive. Consider restricting the language so
that the variable declarations in a block are followed by the procedure declarations.

Exercise 4.27 [� �] Extend the language of the preceding exercise to include subrou-
tines. In our usage a subroutine is like a procedure, except that it does not return a
value and its body is a statement, rather than an expression. Also, add subroutine
calls as a new kind of statement and extend the syntax of blocks so that they may be
used to declare both procedures and subroutines. How does this affect the denoted
and expressed values? What happens if a procedure is referenced in a subroutine call,
or vice versa?

4.4 MUTABLE-PAIRS: A Language with Mutable Pairs

In exercise 3.9 we added lists to our language, but these were immutable:
there was nothing like Scheme’s set-car! or set-cdr! for them.

Now, let’s add mutable pairs to IMPLICIT-REFS. Pairs will be expressed
values, and will have the following operations:

newpair : Expval× Expval→MutPair
left : MutPair→Expval
right : MutPair→Expval
setleft : MutPair×Expval→Unspecified
setright : MutPair×Expval→Unspecified

A pair consists of two locations, each of which is independently assignable.
This gives us the domain equations:

ExpVal = Int+Bool+Proc+MutPair
DenVal = Ref(ExpVal)
MutPair = Ref(ExpVal) ×Ref(ExpVal)

We call this language MUTABLE-PAIRS.

4.4.1 Implementation

We can implement this literally using the reference data type from our
preceding examples. The code is shown in figure 4.9.

Once we’ve done this, it is straightforward to add these to the language.
We add a mutpair-val variant to our data type of expressed values, and
five new lines to value-of. These are shown in figure 4.10. We arbitrarily
choose to make setleft return 82 and setright return 83. The trace of an
example, using the same instrumentation as before, is shown in figures 4.11
and 4.12.

4.4 MUTABLE-PAIRS: A Language with Mutable Pairs 125

(define-datatype mutpair mutpair?
(a-pair

(left-loc reference?)
(right-loc reference?)))

make-pair : ExpVal × ExpVal → MutPair
(define make-pair

(lambda (val1 val2)
(a-pair
(newref val1)
(newref val2))))

left : MutPair → ExpVal
(define left

(lambda (p)
(cases mutpair p
(a-pair (left-loc right-loc)

(deref left-loc)))))

right : MutPair → ExpVal
(define right

(lambda (p)
(cases mutpair p
(a-pair (left-loc right-loc)

(deref right-loc)))))

setleft : MutPair × ExpVal → Unspecified
(define setleft

(lambda (p val)
(cases mutpair p
(a-pair (left-loc right-loc)

(setref! left-loc val)))))

setright : MutPair × ExpVal → Unspecified
(define setright

(lambda (p val)
(cases mutpair p
(a-pair (left-loc right-loc)

(setref! right-loc val)))))

Figure 4.9 Naive implementation of mutable pairs

126 4 State

(newpair-exp (exp1 exp2)
(let ((val1 (value-of exp1 env))

(val2 (value-of exp2 env)))
(mutpair-val (make-pair val1 val2))))

(left-exp (exp1)
(let ((val1 (value-of exp1 env)))

(let ((p1 (expval->mutpair val1)))
(left p1))))

(right-exp (exp1)
(let ((val1 (value-of exp1 env)))

(let ((p1 (expval->mutpair val1)))
(right p1))))

(setleft-exp (exp1 exp2)
(let ((val1 (value-of exp1 env))

(val2 (value-of exp2 env)))
(let ((p (expval->mutpair val1)))

(begin
(setleft p val2)
(num-val 82)))))

(setright-exp (exp1 exp2)
(let ((val1 (value-of exp1 env))

(val2 (value-of exp2 env)))
(let ((p (expval->mutpair val1)))

(begin
(setright p val2)
(num-val 83)))))

Figure 4.10 Integrating mutable pairs into the interpreter

4.4.2 Another Representation of Mutable Pairs

The representation of a mutable pair as two references does not take advan-
tage of all we know about MutPair. The two locations in a pair are indepen-
dently assignable, but they are not independently allocated. We know that
they will be allocated together: if the left part of a pair is one location, then
the right part is in the next location. So we can instead represent the pair by
a reference to its left. The code for this is shown in figure 4.13. Nothing else
need change.

4.4 MUTABLE-PAIRS: A Language with Mutable Pairs 127

> (run "let glo = pair(11,22)
in let f = proc (loc)

let d1 = setright(loc, left(loc))
in let d2 = setleft(glo, 99)
in -(left(loc),right(loc))

in (f glo)")
;; allocating cells for init-env
newref: allocating location 0
newref: allocating location 1
newref: allocating location 2
entering let glo
;; allocating cells for the pair
newref: allocating location 3
newref: allocating location 4
;; allocating cell for glo
newref: allocating location 5
entering body of let glo with env =
((glo 5) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 #(struct:num-val 11))
(4 #(struct:num-val 22))
(5 #(struct:mutpair-val #(struct:a-pair 3 4))))

entering let f
;; allocating cell for f
newref: allocating location 6
entering body of let f with env =
((f 6) (glo 5) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 #(struct:num-val 11))
(4 #(struct:num-val 22))
(5 #(struct:mutpair-val #(struct:a-pair 3 4)))
(6 (procedure loc ... ((glo 5) (i 0) (v 1) (x 2)))))

Figure 4.11 Trace of evaluation in MUTABLE-PAIRS

128 4 State

;; allocating cell for loc
newref: allocating location 7
entering body of proc loc with env =
((loc 7) (glo 5) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 #(struct:num-val 11))
(4 #(struct:num-val 22))
(5 #(struct:mutpair-val #(struct:a-pair 3 4)))
(6 (procedure loc ... ((glo 5) (i 0) (v 1) (x 2))))
(7 #(struct:mutpair-val #(struct:a-pair 3 4))))

#(struct:num-val 88)
>

Figure 4.12 Trace of evaluation in MUTABLE-PAIRS, cont’d

Similarly, one could represent any aggregate object in the heap by a pointer
to its first location. However, a pointer does not by itself identify an area of
memory unless it is supplemented by information about the length of the
area (see exercise 4.30). The lack of length information is a source of classic
security errors, such as out-of-bounds array writes.

Exercise 4.28 [� �] Write down the specification rules for the five mutable-pair oper-
ations.

Exercise 4.29 [� �] Add arrays to this language. Introduce new operators newarray,
arrayref, and arrayset that create, dereference, and update arrays. This leads to

ArrVal = (Ref(ExpVal))∗

ExpVal = Int+Bool+Proc+ArrVal
DenVal = Ref(ExpVal)

Since the locations in an array are consecutive, use a representation like the second
representation above. What should be the result of the following program?

4.4 MUTABLE-PAIRS: A Language with Mutable Pairs 129

mutpair? : SchemeVal → Bool
(define mutpair?

(lambda (v)
(reference? v)))

make-pair : ExpVal × ExpVal → MutPair
(define make-pair

(lambda (val1 val2)
(let ((ref1 (newref val1)))
(let ((ref2 (newref val2)))

ref1))))

left : MutPair → ExpVal
(define left

(lambda (p)
(deref p)))

right : MutPair → ExpVal
(define right

(lambda (p)
(deref (+ 1 p))))

setleft : MutPair × ExpVal → Unspecified
(define setleft

(lambda (p val)
(setref! p val)))

setright : MutPair × ExpVal → Unspecified
(define setright

(lambda (p val)
(setref! (+ 1 p) val)))

Figure 4.13 Alternate representation of mutable pairs

let a = newarray(2,-99)
p = proc (x)

let v = arrayref(x,1)
in arrayset(x,1,-(v,-1))

in begin arrayset(a,1,0); (p a); (p a); arrayref(a,1) end

Here newarray(2,-99) is intended to build an array of size 2, with each location
in the array containing -99. begin expressions are defined in exercise 4.4. Make the
array indices zero-based, so an array of size 2 has indices 0 and 1.

130 4 State

Exercise 4.30 [� �] Add to the language of exercise 4.29 a procedure arraylength,
which returns the size of an array. Your procedure should work in constant time.
Make sure that arrayref and arrayset check to make sure that their indices are
within the length of the array.

4.5 Parameter-Passing Variations

When a procedure body is executed, its formal parameter is bound to a
denoted value. Where does that value come from? It must be passed from
the actual parameter in the procedure call. We have already seen two ways
in which a parameter can be passed:

• Natural parameter passing, in which the denoted value is the same as the
expressed value of the actual parameter (page 75).

• Call-by-value, in which the denoted value is a reference to a location con-
taining the expressed value of the actual parameter (section 4.3). This is
the most commonly used form of parameter-passing.

In this section, we explore some alternative parameter-passing mecha-
nisms.

4.5.1 CALL-BY-REFERENCE

Consider the following expression:

let p = proc (x) set x = 4
in let a = 3

in begin (p a); a end

Under call-by-value, the denoted value associated with x is a reference that
initially contains the same value as the reference associated with a, but these
references are distinct. Thus the assignment to x has no effect on the contents
of a’s reference, so the value of the entire expression is 3.

With call-by-value, when a procedure assigns a new value to one of its
parameters, this cannot possibly be seen by its caller. Of course, if the param-
eter passed to the caller contains a mutable pair, as in section 4.4, then the
effect of setleft or setright will be visible to a caller. But the effect of a
set is not.

Though this isolation between the caller and callee is generally desirable,
there are times when it is valuable to allow a procedure to be passed loca-
tions with the expectation that they will be assigned by the procedure. This

4.5 Parameter-Passing Variations 131

may be accomplished by passing the procedure a reference to the location of
the caller’s variable, rather than the contents of the variable. This parameter-
passing mechanism is called call-by-reference. If an operand is simply a vari-
able reference, a reference to the variable’s location is passed. The formal
parameter of the procedure is then bound to this location. If the operand is
some other kind of expression, then the formal parameter is bound to a new
location containing the value of the operand, just as in call-by-value. Using
call-by-reference in the above example, the assignment of 4 to x has the effect
of assigning 4 to a, so the entire expression would return 4, not 3.

When a call-by-reference procedure is called and the actual parameter is a
variable, what is passed is the location of that variable, rather than the con-
tents of that location, as in call-by-value. For example, consider

let f = proc (x) set x = 44
in let g = proc (y) (f y)

in let z = 55
in begin (g z); z end

When the procedure g is called, y is bound to the location of z, not the con-
tents of that location. Similarly, when f is called, x becomes bound to that
same location. So x, y, and z will all be bound to the same location, and the
effect of the set x = 44 is to set that location to 44. Hence the value of the
entire expression is 44. A trace of the execution of this expression is shown
in figures 4.14 and 4.15; in this example, x, y, and z all wind up bound to
location 5.

A typical use of call-by-reference is to return multiple values. A procedure
can return one value in the normal way and assign others to parameters that
are passed by reference. For another sort of example, consider the problem
of swapping the values in two variables:

let swap = proc (x) proc (y)
let temp = x
in begin

set x = y;
set y = temp

end
in let a = 33

in let b = 44
in begin

((swap a) b);
-(a,b)

end

132 4 State

Under call-by-reference, this swaps the values of a and b, so it returns 11. If
this program were run with our existing call-by-value interpreter, however,
it would return -11, because the assignments inside the swap procedure then
have no effect on variables a and b.

Under call-by-reference, variables still denote references to expressed val-
ues, just as they did under call-by-value:

ExpVal = Int+Bool+Proc
DenVal = Ref(ExpVal)

The only thing that changes is the allocation of new locations. Under
call-by-value, a new location is created for every evaluation of an operand;
under call-by-reference, a new location is created for every evaluation of an
operand other than a variable.

This is easy to implement. The function apply-proceduremust change,
because it is no longer true that a new location is allocated for every proce-
dure call. That responsibility must be moved upstream, to the call-exp
line in value-of, which will have the information to make that decision.

apply-procedure : Proc × Ref → ExpVal
(define apply-procedure

(lambda (proc1 val)
(cases proc proc1

(procedure (var body saved-env)
(value-of body
(extend-env var val saved-env))))))

We then modify the call-exp line in value-of, and introduce a new
function value-of-operand that makes the necessary decision.

(call-exp (rator rand)
(let ((proc (expval->proc (value-of rator env)))

(arg (value-of-operand rand env)))
(apply-procedure proc arg)))

The procedure value-of-operand checks to see if the operand is a vari-
able. If it is, then the reference that the variable denotes is returned and then
passed to the procedure by apply-procedure. Otherwise, the operand is
evaluated, and a reference to a new location containing that value is returned.

value-of-operand : Exp × Env → Ref
(define value-of-operand

(lambda (exp env)
(cases expression exp

(var-exp (var) (apply-env env var))
(else

(newref (value-of exp env))))))

4.5 Parameter-Passing Variations 133

We could modify let to work in a similar fashion, but we have chosen not
to do so, so that some call-by-value functionality will remain in the language.

More than one call-by-reference parameter may refer to the same location,
as in the following program.

let b = 3
in let p = proc (x) proc(y)

begin
set x = 4;
y

end
in ((p b) b)

This yields 4 since both x and y refer to the same location, which is the bind-
ing of b. This phenomenon is known as variable aliasing. Here x and y are
aliases (names) for the same location. Generally, we do not expect an assign-
ment to one variable to change the value of another, so aliasing makes it very
difficult to understand programs.

Exercise 4.31 [�] Write out the specification rules for CALL-BY-REFERENCE.

Exercise 4.32 [�] Extend the language CALL-BY-REFERENCE to have procedures of
multiple arguments.

Exercise 4.33 [� �] Extend the language CALL-BY-REFERENCE to support call-by-
value procedures as well.

Exercise 4.34 [�] Add a call-by-reference version of let, called letref, to the lan-
guage. Write the specification and implement it.

Exercise 4.35 [� �] We can get some of the benefits of call-by-reference without leav-
ing the call-by-value framework. Extend the language IMPLICIT-REFS by adding a
new expression

Expression ::= ref Identifier
ref-exp (var)

This differs from the language EXPLICIT-REFS, since references are only of variables.
This allows us to write familiar programs such as swap within our call-by-value lan-
guage. What should be the value of this expression?

let a = 3
in let b = 4

in let swap = proc (x) proc (y)
let temp = deref(x)
in begin

setref(x,deref(y));
setref(y,temp)

end
in begin ((swap ref a) ref b); -(a,b) end

Here we have used a version of let with multiple declarations (exercise 3.16). What
are the expressed and denoted values of this language?

134 4 State

> (run "
let f = proc (x) set x = 44
in let g = proc (y) (f y)
in let z = 55
in begin

(g z);
z

end")
newref: allocating location 0
newref: allocating location 1
newref: allocating location 2
entering let f
newref: allocating location 3
entering body of let f with env =
((f 3) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2)))))

entering let g
newref: allocating location 4
entering body of let g with env =
((g 4) (f 3) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 (procedure y ... ((f 3) (i 0) (v 1) (x 2)))))

entering let z
newref: allocating location 5
entering body of let z with env =
((z 5) (g 4) (f 3) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 (procedure y ... ((f 3) (i 0) (v 1) (x 2))))
(5 #(struct:num-val 55)))

Figure 4.14 Sample evaluation in CALL-BY-REFERENCE

4.5 Parameter-Passing Variations 135

entering body of proc y with env =
((y 5) (f 3) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 (procedure y ... ((f 3) (i 0) (v 1) (x 2))))
(5 #(struct:num-val 55)))

entering body of proc x with env =
((x 5) (i 0) (v 1) (x 2))
store =
((0 #(struct:num-val 1))
(1 #(struct:num-val 5))
(2 #(struct:num-val 10))
(3 (procedure x ... ((i 0) (v 1) (x 2))))
(4 (procedure y ... ((f 3) (i 0) (v 1) (x 2))))
(5 #(struct:num-val 55)))

#(struct:num-val 44)
>

Figure 4.15 Sample evaluation in CALL-BY-REFERENCE, cont’d

Exercise 4.36 [�] Most languages support arrays, in which case array references are
generally treated like variable references under call-by-reference. If an operand is an
array reference, then the location referred to, rather than its contents, is passed to the
called procedure. This allows, for example, a swap procedure to be used in commonly
occurring situations in which the values in two array elements are to be exchanged.
Add array operators like those of exercise 4.29 to the call-by-reference language of this
section, and extend value-of-operand to handle this case, so that, for example, a
procedure application like

((swap (arrayref a i)) (arrayref a j))

will work as expected. What should happen in the case of

((swap (arrayref a (arrayref a i))) (arrayref a j)) ?

Exercise 4.37 [� �] Call-by-value-result is a variation on call-by-reference. In call-by-
value-result, the actual parameter must be a variable. When a parameter is passed,
the formal parameter is bound to a new reference initialized to the value of the actual

136 4 State

parameter, just as in call-by-value. The procedure body is then executed normally.
When the procedure body returns, however, the value in the new reference is copied
back into the reference denoted by the actual parameter. This may be more efficient
than call-by-reference because it can improve memory locality. Implement call-by-
value-result and write a program that produces different answers using call-by-value-
result and call-by-reference.

4.5.2 Lazy Evaluation: CALL-BY-NAME and CALL-BY-NEED

All the parameter-passing mechanisms we have discussed so far are eager:
they always find a value for each operand. We now turn to a very different
form of parameter passing, called lazy evaluation. Under lazy evaluation, an
operand in a procedure call is not evaluated until it is needed by the proce-
dure body. If the body never refers to the parameter, then there is no need to
evaluate it.

This can potentially avoid non-termination. For example, consider

letrec infinite-loop (x) = infinite-loop(-(x,-1))
in let f = proc (z) 11

in (f (infinite-loop 0))

Here infinite-loop is a procedure that, when called, never terminates.
f is a procedure that, when called, never refers to its argument and always
returns 11. Under any of the mechanisms considered so far, this program will
fail to terminate. Under lazy evaluation, however, this program will return
11, because the operand (infinite-loop 1) is never evaluated.

We now modify our language to use lazy evaluation. Under lazy evalu-
ation, we do not evaluate an operand expression until it is needed. There-
fore we associate the bound variable of a procedure with an unevaluated
operand. When the procedure body needs the value of its bound variable,
the associated operand is evaluated. We sometimes say that the operand is
frozen when it is passed unevaluated to the procedure, and that it is thawed
when the procedure evaluates it.

Of course we will also have to include the environment in which that pro-
cedure is to be evaluated. To do this, we introduce a new data type of thunks.
A thunk consists of an expression and an environment.

(define-datatype thunk thunk?
(a-thunk
(exp1 expression?)
(env environment?)))

When a procedure needs to use the value of its bound variable, it will evalu-
ate the associated thunk.

4.5 Parameter-Passing Variations 137

Our situation is somewhat more complicated, because we need to accom-
modate both lazy evaluation, effects, and eager evaluation (for let). We
therefore let our denoted values be references to locations containing either
expressed values or thunks.

DenVal = Ref(ExpVal+Thunk)
ExpVal = Int+Bool+Proc

Our policy for allocating new locations will be similar to the one we used
for call-by-reference: If the operand is a variable, then we pass its denota-
tion, which is a reference. Otherwise, we pass a reference to a new location
containing a thunk for the unevaluated argument.

value-of-operand : Exp × Env → Ref
(define value-of-operand

(lambda (exp env)
(cases expression exp
(var-exp (var) (apply-env env var))
(else

(newref (a-thunk exp env))))))

When we evaluate a var-exp, we first find the location to which the vari-
able is bound. If the location contains an expressed value, then that value is
returned as the value of the var-exp. If it instead contains a thunk, then the
thunk is evaluated, and that value is returned. This design is called call by
name.

(var-exp (var)
(let ((ref1 (apply-env env var)))

(let ((w (deref ref1)))
(if (expval? w)

w
(value-of-thunk w)))))

The procedure value-of-thunk is defined as

value-of-thunk : Thunk → ExpVal
(define value-of-thunk

(lambda (th)
(cases thunk th
(a-thunk (exp1 saved-env)

(value-of exp1 saved-env))))

Alternatively, once we find the value of the thunk, we can install that
expressed value in the same location, so that the thunk will not be evaluated
again. This arrangement is called call by need.

138 4 State

(var-exp (var)
(let ((ref1 (apply-env env var)))
(let ((w (deref ref1)))

(if (expval? w)
w
(let ((val1 (value-of-thunk w)))
(begin

(setref! ref1 val1)
val1))))))

This is an instance of a general strategy called memoization.
An attraction of lazy evaluation in all its forms is that in the absence of

effects, it supports reasoning about programs in a particularly simple way.
The effect of a procedure call can be modeled by replacing the call with the
body of the procedure, with every reference to a formal parameter in the
body replaced by the corresponding operand. This evaluation strategy is the
basis for the lambda calculus, where it is called β-reduction.

Unfortunately, call-by-name and call-by-need make it difficult to deter-
mine the order of evaluation, which in turn is essential to understanding
a program with effects. If there are no effects, though, this is not a problem.
Thus lazy evaluation is popular in functional programming languages (those
with no effects), and rarely found elsewhere.

Exercise 4.38 [�] The example below shows a variation of exercise 3.25 that works
under call-by-need. Does the original program in exercise 3.25 work under call-by-
need? What happens if the program below is run under call-by-value? Why?

let makerec = proc (f)
let d = proc (x) (f (x x))
in (f (d d))

in let maketimes4 = proc (f)
proc (x)
if zero?(x)
then 0
else -((f -(x,1)), -4)

in let times4 = (makerec maketimes4)
in (times4 3)

Exercise 4.39 [�] In the absence of effects, call-by-name and call-by-need always give
the same answer. Construct an example in which call-by-name and call-by-need give
different answers.

Exercise 4.40 [�] Modify value-of-operand so that it avoids making thunks for
constants and procedures.

Exercise 4.41 [� �] Write out the specification rules for call-by-name and call-by-need.

Exercise 4.42 [� �] Add a lazy let to the call-by-need interpreter.

5 Continuation-Passing
Interpreters

In chapter 3, we used the concept of environments to explore the behav-
ior of bindings, which establish the data context in which each portion of
a program is executed. Here we will do the same for the control context in
which each portion of a program is executed. We will introduce the con-
cept of a continuation as an abstraction of the control context, and we will
write interpreters that take a continuation as an argument, thus making the
control context explicit.

Consider the following definition of the factorial function in Scheme.

(define fact
(lambda (n)

(if (zero? n) 1 (* n (fact (- n 1))))))

We can use a derivation to model a calculation with fact:

(fact 4)
= (* 4 (fact 3))
= (* 4 (* 3 (fact 2)))
= (* 4 (* 3 (* 2 (fact 1))))
= (* 4 (* 3 (* 2 (* 1 (fact 0)))))
= (* 4 (* 3 (* 2 (* 1 1))))
= (* 4 (* 3 (* 2 1)))
= (* 4 (* 3 2))
= (* 4 6)
= 24

This is the natural recursive definition of factorial. Each call of fact is
made with a promise that the value returned will be multiplied by the value
of n at the time of the call. Thus fact is invoked in larger and larger control
contexts as the calculation proceeds. Compare this behavior to that of the
following procedures.

140 5 Continuation-Passing Interpreters

(define fact-iter
(lambda (n)
(fact-iter-acc n 1)))

(define fact-iter-acc
(lambda (n a)
(if (zero? n) a (fact-iter-acc (- n 1) (* n a)))))

With these definitions, we calculate:

(fact-iter 4)
= (fact-iter-acc 4 1)
= (fact-iter-acc 3 4)
= (fact-iter-acc 2 12)
= (fact-iter-acc 1 24)
= (fact-iter-acc 0 24)
= 24

Here, fact-iter-acc is always invoked in the same control context: in
this case, no context at all. When fact-iter-acc calls itself, it does so at
the “tail end” of an execution of fact-iter-acc. No promise is made to
do anything with the returned value other than to return it as the result of
the call to fact-iter-acc. We call this a tail call. Thus each step in the
derivation above has the form (fact-iter-acc n a).

When a procedure such as fact executes, additional control information
is recorded with each recursive call, and this information is retained until the
call returns. This reflects growth of the control context in the first derivation
above. Such a process is said to exhibit recursive control behavior.

By contrast, no additional control information need be recorded when
fact-iter-acc calls itself. This is reflected in the derivation by recursive
calls occurring at the same level within the expression (on the outside in the
derivation above). In such cases the system does not need an ever-increasing
amount of memory for control contexts as the depth of recursion (the num-
ber of recursive calls without corresponding returns) increases. A process
that uses a bounded amount of memory for control information is said to
exhibit iterative control behavior.

Why do these programs exhibit different control behavior? In the recursive
definition of factorial, the procedure fact is called in an operand position. We
need to save context around this call because we need to remember that after
the evaluation of the procedure call, we still need to finish evaluating the
operands and executing the outer call, in this case to the waiting multiplica-
tion. This leads us to an important principle:

5.1 A Continuation-Passing Interpreter 141

It is evaluation of operands, not the calling of procedures, that
makes the control context grow.

In this chapter we will learn how to track and manipulate control contexts.
Our central tool will be the data type of continuations. Continuations are an
abstraction of the notion of control context, much as environments are an
abstraction of data contexts. We will explore continuations by writing an
interpreter that explicitly passes a continuation parameter, just as our pre-
vious interpreters explicitly passed an environment parameter. Once we do
this for the simple cases, we can see how to add to our language facilities that
manipulate control contexts in more complicated ways, such as exceptions
and threads.

In chapter 6 we show how the same techniques we used to transform the
interpreter can be applied to any program. We say that a program trans-
formed in this manner is in continuation-passing style. Chapter 6 also shows
several other important uses of continuations.

5.1 A Continuation-Passing Interpreter

In our new interpreter, the major procedures such as value-of will take a
third parameter. This new parameter, the continuation, is intended to be an
abstraction of the control context in which each expression is evaluated.

We begin with an interpreter in figure 5.1 of the language LETREC of sec-
tion 3.4. We refer to the result of value-of-program as a FinalAnswer to
emphasize that this expressed value is the final value of the program.

Our goal is to rewrite the interpreter so that no call to value-of builds
control context. When the control context needs to grow, we extend the
continuation parameter, much as we extended the environment in the inter-
preters of chapter 3 as the program builds up data context. By making the
control context explicit, we can see how it grows and shrinks, and later, in
sections 5.4–5.5 we will use it to add new control behavior to our language.

Now, we know that an environment is a representation of a function from
symbols to denoted values. What does a continuation represent? The con-
tinuation of an expression represents a procedure that takes the result of the
expression and completes the computation. So our interface must include
a procedure apply-cont that takes a continuation cont and an expressed
value val and finishes the computation as specified by cont. The contract
for apply-cont will be

142 5 Continuation-Passing Interpreters

FinalAnswer = ExpVal

value-of-program : Program → FinalAnswer
(define value-of-program

(lambda (pgm)
(cases program pgm

(a-program (exp1)
(value-of exp1 (init-env))))))

value-of : Exp × Env → ExpVal
(define value-of

(lambda (exp env)
(cases expression exp

(const-exp (num) (num-val num))
(var-exp (var) (apply-env env var))
(diff-exp (exp1 exp2)

(let ((num1 (expval->num (value-of exp1 env)))
(num2 (expval->num (value-of exp2 env))))

(num-val (- num1 num2))))
(zero?-exp (exp1)

(let ((num1 (expval->num (value-of exp1 env))))
(if (zero? num1) (bool-val #t) (bool-val #f))))

(if-exp (exp1 exp2 exp3)
(if (expval->bool (value-of exp1 env))
(value-of exp2 env)
(value-of exp3 env)))

(let-exp (var exp1 body)
(let ((val1 (value-of exp1 env)))
(value-of body (extend-env var val1 env))))

(proc-exp (var body)
(proc-val (procedure var body env)))

(call-exp (rator rand)
(let ((proc1 (expval->proc (value-of rator env)))

(arg (value-of rand env)))
(apply-procedure proc1 arg)))

(letrec-exp (p-name b-var p-body letrec-body)
(value-of letrec-body
(extend-env-rec p-name b-var p-body env))))))

apply-procedure : Proc × ExpVal → ExpVal
(define apply-procedure

(lambda (proc1 val)
(cases proc proc1

(procedure (var body saved-env)
(value-of body (extend-env var val saved-env))))))

Figure 5.1 Environment-passing Interpreter

5.1 A Continuation-Passing Interpreter 143

FinalAnswer = ExpVal
apply-cont : Cont × ExpVal → FinalAnswer

We call the result of apply-cont a FinalAnswer to remind ourselves that it
is the final value of the computation: it will not be used by any other part of
our program.

What kind of continuation-builders will be included in the interface? We
will discover these continuation-builders as we analyze the interpreter. To
begin, we will need a continuation-builder for the context that says there is
nothing more to do with the value of the computation. We call this continu-
ation (end-cont), and we will specify it by

(apply-cont (end-cont) val)
= (begin

(eopl:printf "End of computation.~%")
val)

Invoking (end-cont) prints out an end-of-computation message and
returns the value of the program. Because (end-cont) prints out a mes-
sage, we can tell how many times it has been invoked. In a correct completed
computation, it should be invoked exactly once.

We rewrite value-of-program as:

value-of-program : Program → FinalAnswer
(define value-of-program

(lambda (pgm)
(cases program pgm
(a-program (exp1)

(value-of/k exp1 (init-env) (end-cont))))))

We can now begin to write value-of/k. We consider each of the alterna-
tives in value-of in turn. The first few lines of value-of simply calculate
a value and return it, without calling value-of again. In the continuation-
passing interpreter, these same lines send the same value to the continuation
by calling apply-cont:

value-of/k : Exp × Env × Cont → FinalAnswer
(define value-of/k

(lambda (exp env cont)
(cases expression exp
(const-exp (num) (apply-cont cont (num-val num)))
(var-exp (var) (apply-cont cont (apply-env env var)))
(proc-exp (var body)

(apply-cont cont
(proc-val (procedure var body env))))

...)))

144 5 Continuation-Passing Interpreters

Up to now the only possible value of cont has been the end continuation,
but that will change momentarily. It is easy to check that if the program
consists of an expression of one of these forms, the value of the expression
will be supplied to end-cont (through apply-cont).

The behavior of letrec is almost as simple: it creates a new environment
without calling value-of, and then evaluates the body in the new envi-
ronment. The value of the body becomes the value of the entire expression.
That means that the body is performed in the same control context as the
entire expression. Therefore the value of the body should be returned to the
continuation of the entire expression. Therefore we write

(letrec-exp (p-name b-var p-body letrec-body)
(value-of/k letrec-body
(extend-env-rec p-name b-var p-body env)
cont))

This illustrates a general principle:

Tail Calls Don’t Grow the Continuation

If the value of exp1 is returned as the value of exp2, then exp1 and exp2

should run in the same continuation.

It would not be correct to write

(letrec-exp (p-name b-var p-body letrec-body)
(apply-cont cont
(value-of/k letrec-body

(extend-env-rec p-name b-var p-body env)
(end-cont))))

because the call to value-of/k is in an operand position: it appears as an
operand to apply-cont. In addition, using the continuation (end-cont)
causes the end-of-computation message to be printed before the computation
is finished, so an error like this is easy to detect.

Let us next consider a zero? expression. In a zero? expression, we
want to evaluate the argument, and then return a value to the continuation
depending on the value of the argument. So we evaluate the argument in a
new continuation that will look at the returned value and do the right thing.

5.1 A Continuation-Passing Interpreter 145

So in value-of/k we write

(zero?-exp (exp1)
(value-of/k exp1 env

(zero1-cont cont)))

where (zero1-cont cont) is a continuation with the property that

(apply-cont (zero1-cont cont) val)
= (apply-cont cont

(bool-val
(zero? (expval->num val))))

Just as with letrec, we could not write in value-of/k

(zero?-exp (exp1)
(let ((val (value-of/k exp1 env (end-cont))))

(apply-cont cont
(bool-val

(zero? (expval->num val))))))

because the call to value-of/k is in operand position. The right-hand
side of a let is in operand position, because (let ((var exp1)) exp2)
is equivalent to ((lambda (var) exp2) exp1). The value of the call to
value-of/k eventually becomes the operand of expval->num. As before,
if we ran this code, the end-of-computation message would appear twice:
once in the middle of the computation and once at the real end.

A let expression is just slightly more complicated than a zero? expres-
sion: after evaluating the right-hand side, we evaluate the body in a suitably
extended environment. The original code for let was

(let-exp (var exp1 body)
(let ((val1 (value-of exp1 env)))

(value-of body
(extend-env var val1 env))))

In the continuation-passing interpreter, we need to evaluate exp1 in a con-
text that will finish the computation. So in value-of/k we write

(let-exp (var exp1 body)
(value-of/k exp1 env

(let-exp-cont var body env cont)))

and we add to our continuations interface the specification

146 5 Continuation-Passing Interpreters

(apply-cont (let-exp-cont var body env cont) val)
= (value-of/k body (extend-env var val env) cont)

The value of the body of the let expression becomes the value of the let
expression, so the body of the let expression is evaluated in the same con-
tinuation as the entire let expression. This is another instance of the Tail
Calls Don’t Grow the Continuation principle.

Let us move on to if expressions. In an if expression, the first thing
evaluated is the test, but the result of the test is not the value of the entire
expression. We need to build a new continuation that will see if the result of
the test expression is a true value, and evaluate either the true expression or
the false expression. So in value-of/k we write

(if-exp (exp1 exp2 exp3)
(value-of/k exp1 env
(if-test-cont exp2 exp3 env cont)))

where if-test-cont is a new continuation-builder subject to the specifi-
cation

(apply-cont (if-test-cont exp2 exp3 env cont) val)
= (if (expval->bool val)

(value-of/k exp2 env cont)
(value-of/k exp3 env cont))

So far, we have four continuation-builders. We can implement them using
either a procedural representation or a data structure representation. The
procedural representation is in figure 5.2 and the data structure representa-
tion, using define-datatype, is in figure 5.3.

Here is a sample calculation that shows how these pieces fit together. As
we did in section 3.3, we write «exp» to denote the abstract syntax tree asso-
ciated with the expression exp. Assume ρ0 is an environment in which b
is bound to (bool-val #t) and assume cont0 is the initial continuation,
which is the value of (end-cont). The commentary is informal and should
be checked against the definition of value-of/k and the specification of
apply-cont. This example is contrived because we have letrec to intro-
duce procedures but we do not yet have a way to invoke them.

5.1 A Continuation-Passing Interpreter 147

Cont = ExpVal → FinalAnswer

end-cont : () → Cont
(define end-cont

(lambda ()
(lambda (val)
(begin

(eopl:printf "End of computation.~%")
val))))

zero1-cont : Cont → Cont
(define zero1-cont

(lambda (cont)
(lambda (val)
(apply-cont cont

(bool-val
(zero? (expval->num val)))))))

let-exp-cont : Var × Exp × Env × Cont → Cont
(define let-exp-cont

(lambda (var body env cont)
(lambda (val)
(value-of/k body (extend-env var val env) cont))))

if-test-cont : Exp × Exp × Env × Cont → Cont
(define if-test-cont

(lambda (exp2 exp3 env cont)
(lambda (val)
(if (expval->bool val)

(value-of/k exp2 env cont)
(value-of/k exp3 env cont)))))

apply-cont : Cont × ExpVal → FinalAnswer
(define apply-cont

(lambda (cont v)
(cont v)))

Figure 5.2 Procedural representation of continuations

148 5 Continuation-Passing Interpreters

(define-datatype continuation continuation?
(end-cont)
(zero1-cont
(cont continuation?))

(let-exp-cont
(var identifier?)
(body expression?)
(env environment?)
(cont continuation?))

(if-test-cont
(exp2 expression?)
(exp3 expression?)
(env environment?)
(cont continuation?)))

apply-cont : Cont × ExpVal → FinalAnswer
(define apply-cont

(lambda (cont val)
(cases continuation cont

(end-cont ()
(begin
(eopl:printf "End of computation.~%")
val))

(zero1-cont (saved-cont)
(apply-cont saved-cont
(bool-val

(zero? (expval->num val)))))
(let-exp-cont (var body saved-env saved-cont)

(value-of/k body
(extend-env var val saved-env) saved-cont))

(if-test-cont (exp2 exp3 saved-env saved-cont)
(if (expval->bool val)
(value-of/k exp2 saved-env saved-cont)
(value-of/k exp3 saved-env saved-cont))))))

Figure 5.3 Data structure representation of continuations

5.1 A Continuation-Passing Interpreter 149

(value-of/k <<letrec p(x) = x in if b then 3 else 4>>
ρ0 cont0)

= letting ρ1 be (extend-env-rec ... ρ0)
(value-of/k <<if b then 3 else 4>> ρ1 cont0)
= next, evaluate the test expression
(value-of/k <> ρ1 (test-cont <<3>> <<4>> ρ1 cont0))
= send the value of b to the continuation
(apply-cont (test-cont <<3>> <<4>> ρ1 cont0)

(bool-val #t))
= evaluate the then-expression
(value-of/k <<3>> ρ1 cont0)
= send the value of the expression to the continuation
(apply-cont cont0 (num-val 3))
= invoke the final continuation with the final answer
(begin (eopl:printf ...) (num-val 3))

Difference expressions add a new wrinkle to our interpreter because they
must evaluate both operands. We begin as we did with if, evaluating the
first argument:

(diff-exp (exp1 exp2)
(value-of/k exp1 env

(diff1-cont exp2 env cont)))

When (diff1-cont exp2 env cont) receives a value, it should eval-
uate exp2 in a context that saves the value of exp1. We specify this by
writing

(apply-cont (diff1-cont exp2 env cont) val1)
= (value-of/k exp2 env

(diff2-cont val1 cont))

When a (diff2-cont val1 cont) receives a value, we know the val-
ues of both operands so we can proceed to send their difference to cont,
which has been waiting to receive it. The specification is

(apply-cont (diff2-cont val1 cont) val2)
= (let ((num1 (expval->num val1))

(num2 (expval->num val2)))
(apply-cont cont
(num-val (- num1 num2))))

150 5 Continuation-Passing Interpreters

Let’s watch this system do an example.

(value-of/k
<<-(-(44,11),3)>>
ρ0

#(struct:end-cont))
= start working on first operand
(value-of/k
<<-(44,11)>>
ρ0

#(struct:diff1-cont <<3>> ρ0

#(struct:end-cont)))
= start working on first operand
(value-of/k
<<44>>
ρ0

#(struct:diff1-cont <<11>> ρ0

#(struct:diff1-cont <<3>> ρ0

#(struct:end-cont))))
= send value of <<44>> to continuation
(apply-cont
#(struct:diff1-cont <<11>> ρ0

#(struct:diff1-cont <<3>> ρ0

#(struct:end-cont)))
(num-val 44))

= now start working on second operand
(value-of/k
<<11>>
ρ0

#(struct:diff2-cont (num-val 44)
#(struct:diff1-cont <<3>> ρ0

#(struct:end-cont))))
= send value to continuation
(apply-cont
#(struct:diff2-cont (num-val 44)

#(struct:diff1-cont <<3>> ρ0

#(struct:end-cont)))
(num-val 11))

= 44 − 11 is 33, send that to the continuation
(apply-cont
#(struct:diff1-cont <<3>> ρ0

#(struct:end-cont))
(num-val 33))

5.1 A Continuation-Passing Interpreter 151

= start working on second operand <<3>>
(value-of/k
<<3>>
ρ0

#(struct:diff2-cont (num-val 33)
#(struct:end-cont)))

= send value to continuation
(apply-cont
#(struct:diff2-cont (num-val 33)

#(struct:end-cont))
(num-val 3))

= 33 − 3 is 30, send that to the continuation
(apply-cont
#(struct:end-cont)
(num-val 30))

apply-cont prints out the completion message "End of computation"
and returns (num-val 30) as the final answer of the computation.

The last thing in our language is procedure application. In the environment-
passing interpreter, we wrote

(call-exp (rator rand)
(let ((proc1 (expval->proc (value-of rator env)))

(val (value-of rand env)))
(apply-procedure proc1 val)))

Here we have two calls to consider, as we did in diff-exp. So we must
choose one of them to be first, and then we must transform the remain-
der to handle the second. Furthermore, we will have to pass the continu-
ation to apply-procedure, because apply-procedure contains a call to
value-of/k.

We choose the evaluation of the operator to be first, so in value-of/kwe
write

(call-exp (rator rand)
(value-of/k rator env

(rator-cont rand env cont)))

As with diff-exp, a rator-cont will evaluate the operand in a suitable
continuation:

(apply-cont (rator-cont rand env cont) val1)
= (value-of/k rand env

(rand-cont val1 cont))

152 5 Continuation-Passing Interpreters

When a rand-cont receives a value, it is ready to call the procedure:

(apply-cont (rand-cont val1 cont) val2)
= (let ((proc1 (expval->proc val1)))

(apply-procedure/k proc1 val2 cont))

Last, we must modify apply-procedure to fit in this continuation-passing
style:

apply-procedure/k : Proc × ExpVal × Cont → FinalAnswer
(define apply-procedure/k

(lambda (proc1 val cont)
(cases proc proc1

(procedure (var body saved-env)
(value-of/k body
(extend-env var val saved-env)
cont)))))

This completes the presentation of the continuation-passing interpreter.
The complete interpreter is shown in figures 5.4 and 5.5. The complete spec-
ification of the continuations is shown in figure 5.6.

Now we can check the assertion that it is evaluation of actual parameters,
not the calling of procedures, that requires growing the control context. In
particular, if we evaluate a procedure call (exp1 exp2) in some continua-
tion cont1, the body of the procedure to which exp1 evaluates will also be
evaluated in the continuation cont1.

But procedure calls do not themselves grow control contexts. Consider the
evaluation of (exp1 exp2), where the value of exp1 is some procedure proc1

and the value of exp2 is some expressed value val2.

(value-of/k <<(exp1 exp2)>> ρ1 cont1)
= evaluate operator
(value-of/k <<exp1>> ρ1

(rator-cont <<exp2>> ρ1 cont1))
= send the procedure to the continuation
(apply-cont
(rator-cont <<exp2>> ρ1 cont1)
proc1)

= evaluate the operand
(value-of/k <<exp2>> ρ1

(rand-cont proc1 cont1))
= send the argument to the continuation
(apply-cont
(rand-cont proc1 cont1)
val2)

= apply the procedure
(apply-procedure/k proc1 val2 cont1)

5.1 A Continuation-Passing Interpreter 153

So the procedure is applied, and its body is evaluated, in the same contin-
uation in which it was called. It is the evaluation of operands, not the entry
into a procedure body, that requires control context.

Exercise 5.1 [�] Implement this data type of continuations using the procedural rep-
resentation.

Exercise 5.2 [�] Implement this data type of continuations using a data-structure rep-
resentation.

Exercise 5.3 [�] Add let2 to this interpreter. A let2 expression is like a let expres-
sion, except that it defines exactly two variables.

Exercise 5.4 [�] Add let3 to this interpreter. A let3 expression is like a let expres-
sion, except that it defines exactly three variables.

Exercise 5.5 [�] Add lists to the language, as in exercise 3.9.

Exercise 5.6 [� �] Add a list expression to the language, as in exercise 3.10. As
a hint, consider adding two new continuation-builders, one for evaluating the first
element of the list and one for evaluating the rest of the list.

Exercise 5.7 [� �] Add multideclaration let (exercise 3.16) to this interpreter.

Exercise 5.8 [� �] Add multiargument procedures (exercise 3.21) to this interpreter.

Exercise 5.9 [� �] Modify this interpreter to implement the IMPLICIT-REFS lan-
guage. As a hint, consider including a new continuation-builder (set-rhs-cont
env var cont).

Exercise 5.10 [� �] Modify the solution to the previous exercise so that the environ-
ment is not kept in the continuation.

Exercise 5.11 [� �] Add the begin expression of exercise 4.4 to the continuation-
passing interpreter. Be sure that no call to value-of or value-of-rands occurs
in a position that would build control context.

Exercise 5.12 [�] Instrument the interpreter of figures 5.4–5.6 to produce output sim-
ilar to that of the calculation on page 150.

Exercise 5.13 [�] Translate the definitions of fact and fact-iter into the LETREC
language. You may add a multiplication operator to the language. Then, using
the instrumented interpreter of the previous exercise, compute (fact 4) and
(fact-iter 4). Compare them to the calculations at the beginning of this chap-
ter. Find (* 4 (* 3 (* 2 (fact 1)))) in the trace of (fact 4). What is the
continuation of apply-procedure/k for this call of (fact 1)?

Exercise 5.14 [�] The instrumentation of the preceding exercise produces volu-
minous output. Modify the instrumentation to track instead only the size of the
largest continuation used during the calculation. We measure the size of a contin-
uation by the number of continuation-builders employed in its construction, so the

154 5 Continuation-Passing Interpreters

value-of-program : Program → FinalAnswer
(define value-of-program

(lambda (pgm)
(cases program pgm

(a-program (exp1)
(value-of/k exp1 (init-env) (end-cont))))))

value-of/k : Exp × Env × Cont → FinalAnswer
(define value-of/k

(lambda (exp env cont)
(cases expression exp

(const-exp (num) (apply-cont cont (num-val num)))
(var-exp (var) (apply-cont cont (apply-env env var)))
(proc-exp (var body)

(apply-cont cont
(proc-val

(procedure var body env))))
(letrec-exp (p-name b-var p-body letrec-body)

(value-of/k letrec-body
(extend-env-rec p-name b-var p-body env)
cont))

(zero?-exp (exp1)
(value-of/k exp1 env
(zero1-cont cont)))

(if-exp (exp1 exp2 exp3)
(value-of/k exp1 env
(if-test-cont exp2 exp3 env cont)))

(let-exp (var exp1 body)
(value-of/k exp1 env
(let-exp-cont var body env cont)))

(diff-exp (exp1 exp2)
(value-of/k exp1 env
(diff1-cont exp2 env cont)))

(call-exp (rator rand)
(value-of/k rator env
(rator-cont rand env cont))))))

Figure 5.4 Continuation-passing interpreter (part 1)

5.2 A Trampolined Interpreter 155

apply-procedure/k : Proc × ExpVal × Cont → FinalAnswer
(define apply-procedure/k

(lambda (proc1 val cont)
(cases proc proc1
(procedure (var body saved-env)

(value-of/k body
(extend-env var val saved-env)
cont)))))

Figure 5.5 Continuation-passing interpreter (part 2)

size of the largest continuation in the calculation on page 150 is 3. Then calculate the
values of fact and fact-iter applied to several operands. Confirm that the size of
the largest continuation used by fact grows linearly with its argument, but the size
of the largest continuation used by fact-iter is a constant.

Exercise 5.15 [�] Our continuation data type contains just the single constant,
end-cont, and all the other continuation-builders have a single continuation argu-
ment. Implement continuations by representing them as lists, where (end-cont) is
represented by the empty list, and each other continuation is represented by a non-
empty list whose car contains a distinctive data structure (called frame or activation
record) and whose cdr contains the embedded continuation. Observe that the inter-
preter treats these lists like a stack (of frames).

Exercise 5.16 [� �] Extend the continuation-passing interpreter to the language of
exercise 4.22. Pass a continuation argument to result-of, and make sure that no
call to result-of occurs in a position that grows a control context. Since a statement
does not return a value, distinguish between ordinary continuations and continua-
tions for statements; the latter are usually called command continuations. The interface
should include a procedure apply-command-cont that takes a command continu-
ation and invokes it. Implement command continuations both as data structures and
as zero-argument procedures.

5.2 A Trampolined Interpreter

One might now be tempted to transcribe the interpreter into an ordinary
procedural language, using a data structure representation of continuations
to avoid the need for higher-order procedures. Most procedural languages,
however, make it difficult to do this translation: instead of growing control
context only when necessary, they add to the control context (the stack!) on
every procedure call. Since the procedure calls in our system never return
until the very end of the computation, the stack in these systems continues
to grow until that time.

156 5 Continuation-Passing Interpreters

(apply-cont (end-cont) val)
= (begin

(eopl:printf
"End of computation.~%")

val)

(apply-cont (diff1-cont exp2 env cont) val1)
= (value-of/k exp2 env (diff2-cont val1 cont))

(apply-cont (diff2-cont val1 cont) val2)
= (let ((num1 (expval->num val1))

(num2 (expval->num val2)))
(apply-cont cont (num-val (- num1 num2))))

(apply-cont (rator-cont rand env cont) val1)
= (value-of/k rand env (rand-cont val1 cont))

(apply-cont (rand-cont val1 cont) val2)
= (let ((proc1 (expval->proc val1)))

(apply-procedure/k proc1 val2 cont))

(apply-cont (zero1-cont cont) val)
= (apply-cont cont (bool-val (zero? (expval->num val))))

(apply-cont (if-test-cont exp2 exp3 env cont) val)
= (if (expval->bool val)

(value-of/k exp2 env cont)
(value-of/k exp3 env cont))

(apply-cont (let-exp-cont var body env cont) val1)
= (value-of/k body (extend-env var val1 env) cont)

Figure 5.6 Specification of continuations for figure 5.4

5.2 A Trampolined Interpreter 157

This behavior is not entirely irrational: in such languages almost every
procedure call occurs on the right-hand side of an assignment statement, so
that almost every procedure call must grow the control context to keep track
of the pending assignment. Hence the architecture is optimized for this most
common case. Furthermore, most languages store environment information
on the stack, so every procedure call must generate a control context that
remembers to remove the environment information from the stack.

In such languages, one solution is to use a technique called trampolining.
To avoid having an unbounded chain of procedure calls, we break the chain
by having one of the procedures in the interpreter actually return a zero-
argument procedure. This procedure, when called, will continue the compu-
tation. The entire computation is driven by a procedure called a trampoline
that bounces from one procedure call to the next. For example, we can insert
a (lambda () ...) around the body of apply-procedure/k, since in
our language no expression would run more than a bounded amount of time
without performing a procedure call.

The resulting code is shown in figure 5.7, which also shows all the tail calls
in the interpreter. Since we have modified apply-procedure/k to return
a procedure, rather than an ExpVal, we must rewrite its contract and also
the contracts of all the procedures that call it. We must therefore review the
contracts of all the procedures in the interpreter.

We begin with value-of-program. Since this is the procedure that
is used to invoke the interpreter, its contract is unchanged. It calls
value-of/k and passes the result to trampoline. Since we are now
doing something with the result of value-of/k, that result is something
other than a FinalAnswer. How can that be, since we have not changed the
code of value-of/k? The procedure value-of/k calls apply-cont tail-
recursively, and apply-cont calls apply-procedure/k tail-recursively,
so any result of apply-procedure/k could appear as the result of
value-of/k. And, of course, we have modified apply-procedure/k to
return something different than it did before.

We introduce the set Bounce for the possible results of the value-of/k.
(We call it Bounce because it is the input to trampoline.) What kind of val-
ues could appear in this set? value-of/k calls itself and apply-cont tail-
recursively, and these are the only tail-recursive calls it makes. So the only
values that could appear as results of value-of/k are those that appear
as results of apply-cont. Also, apply-procedure/k calls value-of/k
tail-recursively, so whatever Bounce is, it is the set of results of value-of/k,
apply-cont, and apply-procedure/k.

158 5 Continuation-Passing Interpreters

The procedures value-of/k and apply-cont just call other procedures
tail-recursively. The only procedure that actually puts values in Bounce is
apply-procedure/k. What kind of values are these? Let’s look at the
code.

(define apply-procedure/k
(lambda (proc1 val cont)
(lambda ()

(cases procedure proc1
(... (value-of/k ...))))))

We see that apply-procedure/k returns a procedure of no arguments,
which when called returns either an ExpVal or the result of a call to one of
value-of/k, apply-cont, or apply-procedure/k, that is, a Bounce. So
the possible values of apply-procedure/k are described by the set

ExpVal ∪ (()→ Bounce)

These are the same as the possible results of value-of/k, so we conclude
that

Bounce = ExpVal ∪ (()→ Bounce)

and that the contracts should be

value-of-program : Program→FinalAnswer
trampoline : Bounce→FinalAnswer
value-of/k : Exp×Env×Cont→Bounce
apply-cont : Cont×ExpVal→Bounce
apply-procedure/k : Proc×ExpVal×Cont→Bounce

The procedure trampoline satisfies its contract: it is initially passed a
Bounce. If its argument is an ExpVal (and hence a FinalAnswer), then it returns
it. Otherwise the argument must be a procedure that returns a Bounce. So it
invokes the procedure on no arguments, and calls itself with the resulting
value, which will always be a Bounce. (We will see in section 7.4 how to
automate reasoning like this.)

Each zero-argument procedure returned by apply-procedure/k repre-
sents a snapshot of the computation in progress. We could choose to return
such a snapshot at different places in the computation; we see in section 5.5
how this idea can be utilized to simulate atomic actions in multithreaded
programs.

5.2 A Trampolined Interpreter 159

Bounce = ExpVal ∪ (() → Bounce)

value-of-program : Program → FinalAnswer
(define value-of-program

(lambda (pgm)
(cases program pgm
(a-program (exp)

(trampoline
(value-of/k exp (init-env) (end-cont)))))))

trampoline : Bounce → FinalAnswer
(define trampoline

(lambda (bounce)
(if (expval? bounce)
bounce
(trampoline (bounce)))))

value-of/k : Exp × Env × Cont → Bounce
(define value-of/k

(lambda (exp env cont)
(cases expression exp
(... (value-of/k ...))
(... (apply-cont ...)))))

apply-cont : Cont × ExpVal → Bounce
(define apply-cont

(lambda (cont val)
(cases continuation cont
(... val)
(... (value-of/k ...))
(... (apply-cont ...))
(... (apply-procedure/k ...)))))

apply-procedure/k : Proc × ExpVal × Cont → Bounce
(define apply-procedure/k

(lambda (proc1 val cont)
(lambda ()
(cases procedure proc1

(... (value-of/k ...))))))

Figure 5.7 Procedural representation of trampolining

160 5 Continuation-Passing Interpreters

Exercise 5.17 [�] Modify the trampolined interpreter to wrap (lambda () ...)
around each call (there’s only one) to apply-procedure/k. Does this modification
require changing the contracts?

Exercise 5.18 [�] The trampoline system in figure 5.7 uses a procedural representation
of a Bounce. Replace this by a data structure representation.

Exercise 5.19 [�] Instead of placing the (lambda () ...) around the body of
apply-procedure/k, place it around the body of apply-cont. Modify the con-
tracts to match this change. Does the definition of Bounce need to change? Then
replace the procedural representation of Bounce with a data-structure representation,
as in exercise 5.18.

Exercise 5.20 [�] In exercise 5.19, the last bounce before trampoline returns a
FinalAnswer is always something like (apply-cont (end-cont) val), where val
is some ExpVal. Optimize your representation of bounces in exercise 5.19 to take
advantage of this fact.

Exercise 5.21 [� �] Implement a trampolining interpreter in an ordinary procedural
language. Use a data structure representation of the snapshots as in exercise 5.18, and
replace the recursive call to trampoline in its own body by an ordinary while or
other looping construct.

Exercise 5.22 [� � �] One could also attempt to transcribe the environment-passing
interpreters of chapter 3 in an ordinary procedural language. Such a transcription
would fail in all but the simplest cases, for the same reasons as suggested above. Can
the technique of trampolining be used in this situation as well?

5.3 An Imperative Interpreter

In chapter 4, we saw how assignment to shared variables could sometimes
be used in place of binding. Consider the familiar example of even and
odd at the top of figure 5.8. It could be replaced by the program below it
in figure 5.8. There the shared variable x allows communication between
the two procedures. In the top example, the procedure bodies look for the
relevant data in the environment; in the other program, they look for the
relevant data in the store.

Consider a trace of the computation at the bottom of figure 5.8. This could
be a trace of either computation. It could be a trace of the first computation,
in which we keep track of the procedure being called and its argument, or it
could be a trace of the second, in which we keep track of the procedure being
called and the contents of the register x.

Yet a third interpretation of this trace would be as the trace of gotos (called
a flowchart program), in which we keep track of the location of the program
counter and the contents of the register x.

5.3 An Imperative Interpreter 161

letrec
even(x) = if zero?(x)

then 1
else (odd sub1(x))

odd(x) = if zero?(x)
then 0
else (even sub1(x))

in (odd 13)

let x = 0
in letrec

even() = if zero?(x)
then 1
else let d = set x = sub1(x)

in (odd)
odd() = if zero?(x)

then 0
else let d = set x = sub1(x)

in (even)
in let d = set x = 13

in (odd)

x = 13;
goto odd;

even: if (x=0) then return(1)
else {x = x-1;

goto odd;}
odd: if (x=0) then return(0)

else {x = x-1;
goto even;}

(odd 13)
= (even 12)
= (odd 11)
...
= (odd 1)
= (even 0)
= 1

Figure 5.8 Three programs with a common trace

162 5 Continuation-Passing Interpreters

But this works only because in the original code the calls to even and odd
do not grow any control context: they are tail calls. We could not carry out
this transformation for fact, because the trace of fact grows unboundedly:
the “program counter” appears not at the outside of the trace, as it does here,
but inside a control context.

We can carry out this transformation for any procedure that does not
require control context. This leads us to an important principle:

A 0-argument tail call is the same as a jump.

If a group of procedures call each other only by tail calls, then we can
translate the calls to use assignment instead of binding, and then we can
translate such an assignment program into a flowchart program, as we did
in figure 5.8.

In this section, we will use this principle to translate the continuation-
passing interpreter into a form suitable for transcription into a language
without higher-order procedures.

We begin with the interpreter of figures 5.4 and 5.5, using a data structure
representation of continuations. The data structure representation is shown
in figures 5.9 and 5.10.

Our first task is to list the procedures that will communicate via shared
registers. These procedures, with their formal parameters, are:

(value-of/k exp env cont)
(apply-cont cont val)
(apply-procedure/k proc1 val cont)

So we will need five global registers: exp, env, cont, val, and proc1.
Each of the three procedures above will be replaced by a zero-argument pro-
cedure, and each call to one of these procedures will be replaced by code that
stores the value of each actual parameter in the corresponding register and
then invokes the new zero-argument procedure. So the fragment

(define value-of/k
(lambda (exp env cont)
(cases expression exp

(const-exp (num) (apply-cont cont (num-val num)))
...)))

can be replaced by

5.3 An Imperative Interpreter 163

(define-datatype continuation continuation?
(end-cont)
(zero1-cont

(saved-cont continuation?))
(let-exp-cont

(var identifier?)
(body expression?)
(saved-env environment?)
(saved-cont continuation?))

(if-test-cont
(exp2 expression?)
(exp3 expression?)
(saved-env environment?)
(saved-cont continuation?))

(diff1-cont
(exp2 expression?)
(saved-env environment?)
(saved-cont continuation?))

(diff2-cont
(val1 expval?)
(saved-cont continuation?))

(rator-cont
(rand expression?)
(saved-env environment?)
(saved-cont continuation?))

(rand-cont
(val1 expval?)
(saved-cont continuation?)))

Figure 5.9 Data structure implementation of continuations (part 1)

(define value-of/k
(lambda ()

(cases expression exp
(const-exp (num)

(set! cont cont)
(set! val (num-val num))
(apply-cont))

...)))

We can now systematically go through each of our four procedures and
perform this transformation. We will also have to transform the body of

164 5 Continuation-Passing Interpreters

apply-cont : Cont × ExpVal → FinalAnswer
(define apply-cont

(lambda (cont val)
(cases continuation cont

(end-cont ()
(begin
(eopl:printf

"End of computation.~%")
val))

(zero1-cont (saved-cont)
(apply-cont saved-cont
(bool-val

(zero? (expval->num val)))))
(let-exp-cont (var body saved-env saved-cont)

(value-of/k body
(extend-env var val saved-env) saved-cont))

(if-test-cont (exp2 exp3 saved-env saved-cont)
(if (expval->bool val)
(value-of/k exp2 saved-env saved-cont)
(value-of/k exp3 saved-env saved-cont)))

(diff1-cont (exp2 saved-env saved-cont)
(value-of/k exp2
saved-env (diff2-cont val saved-cont)))

(diff2-cont (val1 saved-cont)
(let ((num1 (expval->num val1))

(num2 (expval->num val)))
(apply-cont saved-cont

(num-val (- num1 num2)))))
(rator-cont (rand saved-env saved-cont)

(value-of/k rand saved-env
(rand-cont val saved-cont)))

(rand-cont (val1 saved-cont)
(let ((proc (expval->proc val1)))
(apply-procedure/k proc val saved-cont))))))

Figure 5.10 Data structure implementation of continuations (part 2)

5.3 An Imperative Interpreter 165

value-of-program, since that is where value-of/k is initially called.
There are just three easy-to-resolve complications:

1. Often a register is unchanged from one procedure call to another. This
yields an assignment like (set! cont cont) in the example above. We
can safely omit such assignments.

2. We must make sure that no field name in a cases expression happens
to be the same as a register name. In this situation, the field shad-
ows the register, so the register becomes inaccessible. For example, if in
value-of-programwe had written

(cases program pgm
(a-program (exp)

(value-of/k exp (init-env) (end-cont))))

then exp would be locally bound, so we could not assign to the global
register exp. The solution is to rename the local variable to avoid the
conflict:

(cases program pgm
(a-program (exp1)

(value-of/k exp1 (init-env) (end-cont))))

Then we can write

(cases program pgm
(a-program (exp1)

(set! cont (end-cont))
(set! exp exp1)
(set! env (init-env))
(value-of/k)))

We have already carefully chosen the field names in our data types to
avoid such conflicts.

166 5 Continuation-Passing Interpreters

3. An additional complication may arise if a register is used twice in a sin-
gle call. Consider transforming a first call in (cons (f (car x)) (f
(cdr x))), where x is the formal parameter of f. A naive transforma-
tion of this call would be:

(begin
(set! x (car x))
(set! cont (arg1-cont x cont))
(f))

But this is incorrect, because it loads the register x with the new value of
x, when the old value of x was intended. The solution is either to reorder
the assignments so the right values are loaded into the registers, or to
use temporary variables. Most occurrences of this bug can be avoided by
assigning to the continuation variable first:

(begin
(set! cont (arg1-cont x cont))
(set! x (car x))
(f))

Occasionally, temporary variables are unavoidable; consider (f y x)
where x and y are the formal parameters of f. Again, this complication
does not arise in our example.

The result of performing this translation on our interpreter is shown in
figures 5.11–5.14. This process is called registerization. It is an easy process to
translate this into an imperative language that supports gotos.

Exercise 5.23 [�] What happens if you remove the “goto” line in one of the branches
of this interpreter? Exactly how does the interpreter fail?

Exercise 5.24 [�] Devise examples to illustrate each of the complications mentioned
above.

Exercise 5.25 [� �] Registerize the interpreter for multiargument procedures (exer-
cise 3.21).

Exercise 5.26 [�] Convert this interpreter to a trampoline by replacing each call to
apply-procedure/k with (set! pc apply-procedure/k) and using a driver
that looks like

(define trampoline
(lambda (pc)
(if pc (trampoline (pc)) val)))

5.3 An Imperative Interpreter 167

(define exp ’uninitialized)
(define env ’uninitialized)
(define cont ’uninitialized)
(define val ’uninitialized)
(define proc1 ’uninitialized)

value-of-program : Program → FinalAnswer
(define value-of-program

(lambda (pgm)
(cases program pgm
(a-program (exp1)

(set! cont (end-cont))
(set! exp exp1)
(set! env (init-env))
(value-of/k)))))

value-of/k : () → FinalAnswer
usage: : relies on registers

exp : Exp
env : Env
cont : Cont

(define value-of/k
(lambda ()

(cases expression exp
(const-exp (num)

(set! val (num-val num))
(apply-cont))

(var-exp (var)
(set! val (apply-env env var))
(apply-cont))

(proc-exp (var body)
(set! val (proc-val (procedure var body env)))
(apply-cont))

(letrec-exp (p-name b-var p-body letrec-body)
(set! exp letrec-body)
(set! env (extend-env-rec p-name b-var p-body env))
(value-of/k))

Figure 5.11 Imperative interpreter (part 1)

168 5 Continuation-Passing Interpreters

(zero?-exp (exp1)
(set! cont (zero1-cont cont))
(set! exp exp1)
(value-of/k))

(let-exp (var exp1 body)
(set! cont (let-exp-cont var body env cont))
(set! exp exp1)
(value-of/k))

(if-exp (exp1 exp2 exp3)
(set! cont (if-test-cont exp2 exp3 env cont))
(set! exp exp1)
(value-of/k))

(diff-exp (exp1 exp2)
(set! cont (diff1-cont exp2 env cont))
(set! exp exp1)
(value-of/k))

(call-exp (rator rand)
(set! cont (rator-cont rand env cont))
(set! exp rator)
(value-of/k)))))

Figure 5.12 Imperative interpreter (part 2)

Exercise 5.27 [�] Invent a language feature for which setting the cont variable last
requires a temporary variable.

Exercise 5.28 [�] Instrument this interpreter as in exercise 5.12. Since continuations
are represented the same way, reuse that code. Verify that the imperative interpreter
of this section generates exactly the same traces as the interpreter in exercise 5.12.

Exercise 5.29 [�] Apply the transformation of this section to fact-iter (page 139).

Exercise 5.30 [� �] Modify the interpreter of this section so that procedures rely on
dynamic binding, as in exercise 3.28. As a hint, consider transforming the interpreter
of exercise 3.28 as we did in this chapter; it will differ from the interpreter of this
section only for those portions of the original interpreter that are different. Instrument
the interpreter as in exercise 5.28. Observe that just as there is only one continuation in
the state, there is only one environment that is pushed and popped, and furthermore,
it is pushed and popped in parallel with the continuation. We can conclude that
dynamic bindings have dynamic extent: that is, a binding to a formal parameter lasts
exactly until that procedure returns. This is different from lexical bindings, which can
persist indefinitely if they wind up in a closure.

5.3 An Imperative Interpreter 169

apply-cont : () → FinalAnswer
usage: : reads registers

cont : Cont
val : ExpVal

(define apply-cont
(lambda ()

(cases continuation cont
(end-cont ()

(eopl:printf "End of computation.~%")
val)

(zero1-cont (saved-cont)
(set! cont saved-cont)
(set! val (bool-val (zero? (expval->num val))))
(apply-cont))

(let-exp-cont (var body saved-env saved-cont)
(set! cont saved-cont)
(set! exp body)
(set! env (extend-env var val saved-env))
(value-of/k))

(if-test-cont (exp2 exp3 saved-env saved-cont)
(set! cont saved-cont)
(if (expval->bool val)

(set! exp exp2)
(set! exp exp3))

(set! env saved-env)
(value-of/k))

Figure 5.13 Imperative interpreter (part 3)

Exercise 5.31 [�] Eliminate the remaining let expressions in this code by using addi-
tional global registers.

Exercise 5.32 [� �] Improve your solution to the preceding exercise by minimizing
the number of global registers used. You can get away with fewer than 5. You may
use no data structures other than those already used by the interpreter.

Exercise 5.33 [� �] Translate the interpreter of this section into an imperative lan-
guage. Do this twice: once using zero-argument procedure calls in the host language,
and once replacing each zero-argument procedure call by a goto. How do these
alternatives perform as the computation gets longer?

170 5 Continuation-Passing Interpreters

(diff1-cont (exp2 saved-env saved-cont)
(set! cont (diff2-cont val saved-cont))
(set! exp exp2)
(set! env saved-env)
(value-of/k))

(diff2-cont (val1 saved-cont)
(let ((num1 (expval->num val1))

(num2 (expval->num val)))
(set! cont saved-cont)
(set! val (num-val (- num1 num2)))
(apply-cont)))

(rator-cont (rand saved-env saved-cont)
(set! cont (rand-cont val saved-cont))
(set! exp rand)
(set! env saved-env)
(value-of/k))

(rand-cont (rator-val saved-cont)
(let ((rator-proc (expval->proc rator-val)))
(set! cont saved-cont)
(set! proc1 rator-proc)
(set! val val)
(apply-procedure/k))))))

apply-procedure/k : () → FinalAnswer
usage: : relies on registers

proc1 : Proc
val : ExpVal
cont : Cont

(define apply-procedure/k
(lambda ()
(cases proc proc1

(procedure (var body saved-env)
(set! exp body)
(set! env (extend-env var val saved-env))
(value-of/k)))))

Figure 5.14 Imperative interpreter (part 4)

5.4 Exceptions 171

Exercise 5.34 [� �] As noted on page 157, most imperative languages make it difficult
to do this translation, because they use the stack for all procedure calls, even tail
calls. Furthermore, for large interpreters, the pieces of code linked by goto’s may
be too large for some compilers to handle. Translate the interpreter of this section
into an imperative language, circumventing this difficulty by using the technique of
trampolining, as in exercise 5.26.

5.4 Exceptions

So far we have used continuations only to manage the ordinary flow of con-
trol in our languages. But continuations allow us to alter the control context
as well. Let us consider adding exception handling to our defined language.
We add to the language two new productions:

Expression ::= try Expression catch (Identifier) Expression
try-exp (exp1 var handler-exp)

Expression ::= raise Expression
raise-exp (exp)

A try expression evaluates its first argument in the context of the excep-
tion handler described by the catch clause. If this expression returns nor-
mally, its value becomes the value of the entire try expression, and the
exception handler is removed.

A raise expression evaluates its single expression and raises an exception
with that value. The value is sent to the most recently installed exception
handler and is bound to the variable of the handler. The body of the han-
dler is then evaluated. The handler body can either return a value, which
becomes the value of the associated try expression, or it can propagate the
exception by raising another exception; in this case the exception would be
sent to the next most recently installed exception handler.

Here’s an example, where we assume for the moment that we have added
strings to the language.

let list-index =
proc (str)
letrec inner (lst)
= if null?(lst)
then raise("ListIndexFailed")
else if string-equal?(car(lst), str)

then 0
else -((inner cdr(lst)), -1)

172 5 Continuation-Passing Interpreters

The procedure list-index is a Curried procedure that takes a string and
list of strings, and returns the position of the string in the list. If the
desired list element is not found, inner raises an exception and passes
"ListIndexFailed" to the most recently installed handler, skipping over
all the pending subtractions.

The handler can take advantage of knowledge at the call site to handle the
exception appropriately.

let find-member-number =
proc (member-name)
... try ((list-index member-name) member-list)

catch (exn)
raise("CantFindMemberNumber")

The procedure find-member-number takes a string and uses list-index
to find the position of the string in the list member-list. The caller
of find-member-number has no reason to know about list-index, so
find-member-number translates the error message into an exception that
its caller can understand.

Yet another possibility, depending on the purpose of the program, is that
find-member-numbermight return some default number if the member’s
name is not in the list.

let find-member-number =
proc (member-name)
... try ((list-index member-name) member-list)

catch (exn)
the-default-member-number

In both these programs, we have ignored the value of the exception. In other
situations, the value passed by raise might include some partial informa-
tion that the caller could utilize.

Implementing this exception-handling mechanism using the continuation-
passing interpreter is straightforward. We begin with the try expression. In
the data-structure representation, we add two continuation-builders:

(try-cont
(var identifier?)
(handler-exp expression?)
(env environment?)
(cont continuation?))

(raise1-cont
(saved-cont continuation?))

5.4 Exceptions 173

and we add to value-of/k the following clause for try:

(try-exp (exp1 var handler-exp)
(value-of/k exp1 env

(try-cont var handler-exp env cont)))

What happens when the body of the try expression is evaluated? If the
body returns normally, then that value should be sent to the continuation of
the try expression, in this case cont:

(apply-cont (try-cont var handler-exp env cont) val)
= (apply-cont cont val)

What happens if an exception is raised? First, of course, we need to evalu-
ate the argument to raise.

(raise-exp (exp1)
(value-of/k exp1 env

(raise1-cont cont)))

When the value of exp1 is returned to raise1-cont, we need to search
through the continuation for the nearest handler, which may be found in the
topmost try-cont continuation. So in the specification of continuations we
write

(apply-cont (raise1-cont cont) val)
= (apply-handler val cont)

where apply-handler is a procedure that finds the closest exception han-
dler and applies it (figure 5.15).

To show how all this fits together, let us consider a calculation using a
defined language implementation of index. Let exp0 denote the expression

let index
= proc (n)

letrec inner (lst)
= if null?(lst)

then raise 99
else if zero?(-(car(lst),n))

then 0
else -((inner cdr(lst)), -1)

in proc (lst)
try (inner lst)
catch (x) -1

in ((index 5) list(2, 3))

174 5 Continuation-Passing Interpreters

apply-handler : ExpVal × Cont → FinalAnswer
(define apply-handler

(lambda (val cont)
(cases continuation cont

(try-cont (var handler-exp saved-env saved-cont)
(value-of/k handler-exp
(extend-env var val saved-env)
saved-cont))

(end-cont ()
(report-uncaught-exception))

(diff1-cont (exp2 saved-env saved-cont)
(apply-handler val saved-cont))

(diff2-cont (val1 saved-cont)
(apply-handler val saved-cont))

...)))

Figure 5.15 The procedure apply-handler

We start exp0 in an arbitrary environment ρ0 and an arbitrary continuation
cont0. We will show only the highlights of the calculation, with comments
interspersed.

(value-of/k
<<let index = ... in ((index 5) list(2, 3))>>
ρ0

cont0)
= execute the body of the let
(value-of/k
<<((index 5) list(2, 3))>>
((index call this ρ1

#(struct:proc-val
#(struct:procedure n <<letrec ...>> ρ0)))

(i #(struct:num-val 1))
(v #(struct:num-val 5))
(x #(struct:num-val 10)))

#(struct:end-cont))

5.4 Exceptions 175

= eventually we evaluate the try
(value-of/k
<<try (inner2 lst) catch (x) -1>>
((lst call this ρlst=(2 3)

#(struct:list-val
(#(struct:num-val 2) #(struct:num-val 3))))

(inner2 ...)
(n #(struct:num-val 5))
ρ0)

#(struct:end-cont))
= evaluate the body of the try in a try-cont continuation
(value-of/k
<<(inner2 lst)>>
ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))
= evaluate the body of inner2 with lst bound to (2 3)
(value-of/k
<<if null?(lst) ... >>
ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))
= evaluate the conditional, getting to the recursion line
(value-of/k
<<-((inner2 cdr(lst)), -1)>>
ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))
= evaluate the first argument of the diff-exp
(value-of/k
<<(inner2 cdr(lst))>>
ρlst=(2 3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont))))
= evaluate the body of inner2 with lst bound to (3)
(value-of/k
<<if null?(lst) ...>>
((lst #(struct:list-val (#(struct:num-val 3)))) call this ρlst=(3)

(inner2 ...)
ρ0)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont))))

176 5 Continuation-Passing Interpreters

= evaluate the conditional, getting to the recursion line again
(value-of/k
<<-((inner2 cdr(lst)), -1)>>
ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont))))
= evaluate the first argument of the diff-exp
(value-of/k
<<(inner2 cdr(lst))>>
ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))))
= evaluate the body of inner2 with lst bound to ()
(value-of/k
<<if null?(lst) ... >>
((lst #(struct:list-val ())) call this ρlst=()

(inner2 ...)
(n #(struct:num-val 5))
...)

#(struct:diff1-cont <<-1>> ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))))
= evaluate the raise expression
(value-of/k
<<raise 99>>
ρlst=(())

#(struct:diff1-cont <<-1>> ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))))
= evaluate the argument of the raise expression
(value-of/k
<<99>>
ρlst=(())

#(struct:raise1-cont
#(struct:diff1-cont <<-1>> ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont))))))

5.4 Exceptions 177

= use apply-handler to unwind the continuation until we find a handler
(apply-handler
#(struct:num-val 99)
#(struct:diff1-cont <<-1>> ρlst=(3)

#(struct:diff1-cont <<-1>> ρlst=(2 3)
#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))))
=
(apply-handler
#(struct:num-val 99)
#(struct:diff1-cont <<-1>> ρlst=(2 3)

#(struct:try-cont x <<-1>> ρlst=(2 3)
#(struct:end-cont))))

=
(apply-handler
#(struct:num-val 99)
#(struct:try-cont x <<-1>> ρlst=(2 3)

#(struct:end-cont)))
= Handler found; bind the value of the exception to x
(value-of/k
#(struct:const-exp -1)
((x #(struct:num-val 99))
ρlst=(2 3)...)
#(struct:end-cont))

=
(apply-cont #(struct:end-cont) #(struct:num-val -1))
=
#(struct:num-val -1)

If the list had contained the desired element, then we would have called
apply-cont instead of apply-handler, and we would have executed all
the pending diffs in the continuation.

Exercise 5.35 [� �] This implementation is inefficient, because when an exception is
raised, apply-handlermust search linearly through the continuation to find a han-
dler. Avoid this search by making the try-cont continuation available directly in
each continuation.

Exercise 5.36 [�] An alternative design that also avoids the linear search in apply-
handler is to use two continuations, a normal continuation and an exception con-
tinuation. Achieve this goal by modifying the interpreter of this section to take two
continuations instead of one.

Exercise 5.37 [�] Modify the defined language to raise an exception when a proce-
dure is called with the wrong number of arguments.

Exercise 5.38 [�] Modify the defined language to add a division expression. Raise an
exception on division by zero.

178 5 Continuation-Passing Interpreters

Exercise 5.39 [� �] So far, an exception handler can propagate the exception by re-
raising it, or it can return a value that becomes the value of the try expression. One
might instead design the language to allow the computation to resume from the point
at which the exception was raised. Modify the interpreter of this section to accom-
plish this by running the body of the handler with the continuation from the point at
which the raise was invoked.

Exercise 5.40 [� � �] Give the exception handlers in the defined language the ability
to either return or resume. Do this by passing the continuation from the raise excep-
tion as a second argument. This may require adding continuations as a new kind of
expressed value. Devise suitable syntax for invoking a continuation on a value.

Exercise 5.41 [� � �] We have shown how to implement exceptions using a data-
structure representation of continuations. We can’t immediately apply the recipe of
section 2.2.3 to get a procedural representation, because we now have two observers:
apply-handler and apply-cont. Implement the continuations of this section as a
pair of procedures: a one-argument procedure representing the action of the contin-
uation under apply-cont, and a zero-argument procedure representing its action
under apply-handler.

Exercise 5.42 [� �] The preceding exercise captures the continuation only when an
exception is raised. Add to the language the ability to capture a continuation any-
where by adding the form letcc Identifier in Expression with the specification

(value-of/k (letcc var body) ρ cont)
= (value-of/k body (extend-env var cont ρ) cont)

Such a captured continuation may be invoked with throw: the expression throw
Expression to Expression evaluates the two subexpressions. The second expression
should return a continuation, which is applied to the value of the first expression.
The current continuation of the throw expression is ignored.

Exercise 5.43 [� �] Modify letcc as defined in the preceding exercise so that the
captured continuation becomes a new kind of procedure, so instead of writing throw
exp1 to exp2, one would write (exp2 exp1).

Exercise 5.44 [� �] An alternative to letcc and throw of the preceding exer-
cises is to add a single procedure to the language. This procedure, which in
Scheme is called call-with-current-continuation, takes a one-argument
procedure, p, and passes to p a procedure that when invoked with one argu-
ment, passes that argument to the current continuation, cont. We could define
call-with-current-continuation in terms of letcc and throw as follows:

let call-with-current-continuation
= proc (p)

letcc cont
in (p proc (v) throw v to cont)

in ...

Add call-with-current-continuation to the language. Then write a transla-
tor that takes the language with letcc and throw and translates it into the language
without letcc and throw, but with call-with-current-continuation.

5.5 Threads 179

5.5 Threads

In many programming tasks, one may wish to have multiple computations
proceeding at once. When these computations are run in the same address
space as part of the same process, they are usually called threads. In this
section, we will discover how to modify our interpreter to simulate the exe-
cution of multithreaded programs.

Rather than having a single thread of computation, our multithreaded
interpreter will maintain several threads. Each thread consists of a computa-
tion in progress, like those shown earlier in this chapter. Threads communi-
cate through a single shared memory, using assignment as in chapter 4.

In our system, the entire computation consists of a pool of threads. Each
thread may be either running, runnable, or blocked. In our system, exactly one
thread is running at a time. In a multi-CPU system, one might have several
running threads. The runnable threads will be kept on a queue called the
ready queue. There may be other threads that are not ready to be run, for one
reason or another. We say that these threads are blocked. Blocked threads will
be introduced later in this section.

Threads are scheduled for execution by a scheduler, which keeps the ready
queue as part of its state. In addition, it keeps a timer, so that when a thread
has completed a certain number of steps (its time slice or quantum), it is inter-
rupted and put back on the ready queue, and a new thread is selected from
the ready queue to run. This is called pre-emptive scheduling.

Our new language is based on IMPLICIT-REFS and is called THREADS.
In THREADS, new threads are created by a construct called spawn. spawn
takes one argument, which should evaluate to a procedure. A new thread is
created, which, when run, passes an unspecified argument to that procedure.
This thread is not run immediately, but is placed on the ready queue to be
run when its turn arrives. spawn is executed for effect; in our system we
have arbitrarily decided to have it return the number 73.

Let’s look at two examples of programs in this language. Figure 5.16
defines a procedure noisy that takes a list, prints its first element and then
recurs on the rest of the list. Here the main expression creates two threads,
which compete to print out the lists [1,2,3,4,5] and [6,7,8,9,10]. The
exact way in which the lists are interleaved depends on the scheduler; in this
example each thread prints out two elements of its list before the scheduler
interrupts it.

Figure 5.17 shows a producer and a consumer, connected by a buffer ini-
tialized to 0. The producer takes an argument n, goes around the wait loop

180 5 Continuation-Passing Interpreters

test: two-non-cooperating-threads

letrec
noisy (l) = if null?(l)

then 0
else begin print(car(l)); (noisy cdr(l)) end

in
begin
spawn(proc (d) (noisy [1,2,3,4,5])) ;
spawn(proc (d) (noisy [6,7,8,9,10])) ;
print(100);
33

end

100
1
2
6
7
3
4
8
9
5
10
correct outcome: 33
actual outcome: #(struct:num-val 33)
correct

Figure 5.16 Two threads showing interleaved computation

5 times, and then puts n in the buffer. Each time through the wait loop,
it prints the countdown timer (expressed in 200s). The consumer takes an
argument (which it ignores) and goes into a loop, waiting for the buffer to
become non-zero. Each time through this loop, it prints a counter (expressed
in 100s) to show how long it has waited for its result. The main thread puts
the producer on the ready queue, prints 300, and starts the consumer in the
main thread. So the first two items, 300 and 205, are printed by the main
thread. As in the preceding example, the consumer thread and the producer
thread each go around their loop about twice before being interrupted.

5.5 Threads 181

let buffer = 0
in let producer = proc (n)

letrec
wait(k) = if zero?(k)

then set buffer = n
else begin

print(-(k,-200));
(wait -(k,1))
end

in (wait 5)
in let consumer = proc (d)

letrec busywait (k) = if zero?(buffer)
then begin

print(-(k,-100));
(busywait -(k,-1))

end
else buffer

in (busywait 0)
in begin

spawn(proc (d) (producer 44));
print(300);
(consumer 86)

end

300
205
100
101
204
203
102
103
202
201
104
105
correct outcome: 44
actual outcome: #(struct:num-val 44)
correct

Figure 5.17 A producer and consumer, linked by a buffer

182 5 Continuation-Passing Interpreters

The implementation starts with a continuation-passing interpreter for the
language IMPLICIT-REFS. This is similar to the one in section 5.1, with
the addition of a store like the one in IMPLICIT-REFS (of course!) and a
set-rhs-cont continuation builder like the one in exercise 5.9.

To this interpreter we add a scheduler. The scheduler keeps a state consist-
ing of four values and provides six procedures in its interface for manipulat-
ing those values. These are shown in figure 5.18.

Figure 5.19 shows the implementation of this interface. Here (enqueue
q val) returns a queue like q, except that val has been placed at the end.
(dequeue q f) takes the head of the queue and the rest of the queue and
passes them to f as arguments.

We represent a thread as a Scheme procedure of no arguments that returns
an expressed value:

Thread = () → ExpVal

If the ready queue is non-empty, then the procedure run-next-thread
takes the first thread from the ready queue and runs it, giving it a new time
slice of size the-max-time-slice. It also sets the-ready-queue so that
it consists of the remaining threads, if any. If the ready queue is empty, then
run-next-thread returns the contents of the-final-answer. This is
how the computation eventually terminates.

We next turn to the interpreter. A spawn expression evaluates its argument
in a continuation which, when executed, places a new thread on the ready
queue and continues by returning 73 to the caller of the spawn. The new
thread, when executed, passes an arbitrary value (here 28) to the procedure
that was the value of the spawn’s argument. To accomplish this, we add to
value-of/k the clause

(spawn-exp (exp)
(value-of/k exp env
(spawn-cont cont)))

and to apply-cont the clause

(spawn-cont (saved-cont)
(let ((proc1 (expval->proc val)))
(place-on-ready-queue!

(lambda ()
(apply-procedure/k proc1
(num-val 28)
(end-subthread-cont))))

(apply-cont saved-cont (num-val 73))))

5.5 Threads 183

Internal State of the Scheduler

the-ready-queue the ready queue
the-final-answer the value of the main thread, if done
the-max-time-slice the number of steps that each thread may run
the-time-remaining the number of steps remaining for the

currently running thread.

Scheduler Interface

initialize-scheduler! : Int→Unspecified
initializes the scheduler state

place-on-ready-queue! : Thread→Unspecified
places thread on the ready queue

run-next-thread : () → FinalAnswer
runs next thread. If no ready threads, returns the
final answer.

set-final-answer! : ExpVal→Unspecified
sets the final answer

time-expired? : () → Bool
tests whether timer is 0

decrement-timer! : () →Unspecified
decrements time-remaining

Figure 5.18 State and interface of the scheduler

184 5 Continuation-Passing Interpreters

initialize-scheduler! : Int → Unspecified
(define initialize-scheduler!

(lambda (ticks)
(set! the-ready-queue (empty-queue))
(set! the-final-answer ’uninitialized)
(set! the-max-time-slice ticks)
(set! the-time-remaining the-max-time-slice)))

place-on-ready-queue! : Thread → Unspecified
(define place-on-ready-queue!

(lambda (th)
(set! the-ready-queue

(enqueue the-ready-queue th))))

run-next-thread : () → FinalAnswer
(define run-next-thread

(lambda ()
(if (empty? the-ready-queue)

the-final-answer
(dequeue the-ready-queue

(lambda (first-ready-thread other-ready-threads)
(set! the-ready-queue other-ready-threads)
(set! the-time-remaining the-max-time-slice)
(first-ready-thread))))))

set-final-answer! : ExpVal → Unspecified
(define set-final-answer!

(lambda (val)
(set! the-final-answer val)))

time-expired? : () → Bool
(define time-expired?

(lambda ()
(zero? the-time-remaining)))

decrement-timer! : () → Unspecified
(define decrement-timer!

(lambda ()
(set! the-time-remaining (- the-time-remaining 1))))

Figure 5.19 The scheduler

5.5 Threads 185

This is what the trampolined interpreter did when it created a snapshot:
it packaged up a computation (here (lambda () (apply-procedure/k
...))) and passed it to another procedure for processing. In the trampo-
line example, we passed the thread to the trampoline, which simply ran it.
Here we place the new thread on the ready queue and continue our own
computation.

This leads us to the key question: what continuation should we run each
thread in?

• The main thread should be run with a continuation that records the value
of the main thread as the final answer, and then runs any remaining ready
threads.

• When the subthread finishes, there is no way to report its value, so we run
it in a continuation that ignores the value and simply runs any remaining
ready threads.

This gives us two new continuations, whose behavior is implemented by
the following lines in apply-cont:

(end-main-thread-cont ()
(set-final-answer! val)
(run-next-thread))

(end-subthread-cont ()
(run-next-thread))

We start the entire system with value-of-program:

value-of-program : Int × Program → FinalAnswer
(define value-of-program

(lambda (timeslice pgm)
(initialize-store!)
(initialize-scheduler! timeslice)
(cases program pgm
(a-program (exp1)

(value-of/k
exp1
(init-env)
(end-main-thread-cont))))))

Last, we modify apply-cont to decrement the timer each time it is called.
If the timer has expired, then the current computation is suspended. We do
this by putting on the ready queue a thread that will try the apply-cont
again, with the timer restored by some call to run-next-thread.

186 5 Continuation-Passing Interpreters

let x = 0
in let incr_x = proc (id)

proc (dummy)
set x = -(x,-1)

in begin
spawn((incr_x 100));
spawn((incr_x 200));
spawn((incr_x 300))

end

Figure 5.20 An unsafe counter

apply-cont : Cont × ExpVal → FinalAnswer
(define apply-cont

(lambda (cont val)
(if (time-expired?)

(begin
(place-on-ready-queue!
(lambda () (apply-cont cont val)))

(run-next-thread))
(begin

(decrement-timer!)
(cases continuation cont
...)))))

Shared variables are an unreliable method of communication because sev-
eral threads may try to write to the same variable. For example, consider the
program in figure 5.20. Here we create three threads, each of which tries to
increment the same counter x. If one thread reads the counter, but is inter-
rupted before it can update it, then both threads will change the counter to
the same number. Hence the counter may become 2, or even 1, rather than 3.

We would like to be able to ensure that interferences like this do not occur.
Similarly, we would like to be able to organize our program so that the con-
sumer in figure 5.17 doesn’t have to busy-wait. Instead, it should be able to
put itself to sleep and be awakened when the producer has inserted a value
in the shared buffer.

5.5 Threads 187

There are many ways to design such a synchronization facility. A simple
one is the mutex (short for mutual exclusion) or binary semaphore.

A mutex may either be open or closed. It also contains a queue of threads
that are waiting for the mutex to become open. There are three operations on
mutexes:

• mutex is an operation that takes no arguments and creates an initially
open mutex.

• wait is a unary operation by which a thread indicates that it wants access
to a mutex. Its argument must be a mutex. Its behavior depends on the
state of the mutex.

– If the mutex is closed, then the current thread is placed on the mutex’s
wait queue, and is suspended. We say that the current thread is blocked
waiting for this mutex.

– If the mutex is open, it becomes closed and the current thread continues
to run.

A wait is executed for effect only; its return value is unspecified.

• signal is a unary operation by which a thread indicates that it is ready
to release a mutex. Its argument must be a mutex.

– If the mutex is closed, and there are no threads waiting on its wait
queue, then mutex becomes open and the current thread proceeds.

– If the mutex is closed and there are threads in its wait queue, then
one of the threads from the wait queue is put on the scheduler’s ready
queue, and the mutex remains closed. The thread that executed the
signal continues to compute.

– If the mutex is open, then the thread leaves it open and proceeds.

A signal is executed for effect only; its return value is unspecified. A
signal operation always succeeds: the thread that executes it remains
the running thread.

These properties guarantee that only one thread can execute between a
successive pair of calls to wait and signal. This portion of the program
is called a critical region. It is impossible for two different threads to be con-
currently excecuting code in a critical region. For example, figure 5.21 shows

188 5 Continuation-Passing Interpreters

let x = 0
in let mut = mutex()
in let incr_x = proc (id)

proc (dummy)
begin
wait(mut);
set x = -(x,-1);
signal(mut)

end
in begin

spawn((incr_x 100));
spawn((incr_x 200));
spawn((incr_x 300))

end

Figure 5.21 A safe counter using a mutex

our previous example, with a mutex inserted around the critical line. In this
program, only one thread can execute the set x = -(x,-1) at a time, so
the counter is guaranteed to reach the final value of 3.

We model a mutex as two references: one to its state (either open or closed)
and one to a list of threads waiting for this mutex. We also make mutexes
expressed values.

(define-datatype mutex mutex?
(a-mutex
(ref-to-closed? reference?)
(ref-to-wait-queue reference?)))

We add the appropriate line to value-of/k

(mutex-exp ()
(apply-cont cont (mutex-val (new-mutex))))

where

new-mutex : () → Mutex
(define new-mutex

(lambda ()
(a-mutex

(newref #f)
(newref ’()))))

5.5 Threads 189

wait and signal will be new unary operations, which simply call the
procedures wait-for-mutex and signal-mutex. wait and signal
both evaluate their single argument, so in apply-cont we write

(wait-cont (saved-cont)
(wait-for-mutex

(expval->mutex val)
(lambda () (apply-cont saved-cont (num-val 52)))))

(signal-cont (saved-cont)
(signal-mutex

(expval->mutex val)
(lambda () (apply-cont saved-cont (num-val 53)))))

Now we can write wait-for-mutex and signal-mutex. These proce-
dures take two arguments: a mutex and a thread, and they work as described
in the text above (figure 5.22).

Exercise 5.45 [�] Add to the language of this section a construct called yield. When-
ever a thread executes a yield, it is placed on the ready queue, and the thread at the
head of the ready queue is run. When the thread is resumed, it should appear as if
the call to yield had returned the number 99.

Exercise 5.46 [� �] In the system of exercise 5.45, a thread may be placed on the ready
queue either because its time slot has been exhausted or because it chose to yield. In
the latter case, it will be restarted with a full time slice. Modify the system so that
the ready queue keeps track of the remaining time slice (if any) of each thread, and
restarts the thread only with the time it has remaining.

Exercise 5.47 [�] What happens if we are left with two subthreads, each waiting for
a mutex held by the other subthread?

Exercise 5.48 [�] We have used a procedural representation of threads. Replace this
by a data-structure representation.

Exercise 5.49 [�] Do exercise 5.15 (continuations as a stack of frames) for THREADS.

Exercise 5.50 [� �] Registerize the interpreter of this section. What is the set of mutu-
ally tail-recursive procedures that must be registerized?

Exercise 5.51 [� � �] We would like to be able to organize our program so that the con-
sumer in figure 5.17 doesn’t have to busy-wait. Instead, it should be able to put itself
to sleep and be awakened when the producer has put a value in the buffer. Either
write a program with mutexes to do this, or implement a synchronization operator
that makes this possible.

Exercise 5.52 [� � �] Write a program using mutexes that will be like the program
in figure 5.21, except that the main thread waits for all three of the subthreads to
terminate, and then returns the value of x.

190 5 Continuation-Passing Interpreters

wait-for-mutex : Mutex × Thread → FinalAnswer
usage: waits for mutex to be open, then closes it.
(define wait-for-mutex

(lambda (m th)
(cases mutex m

(a-mutex (ref-to-closed? ref-to-wait-queue)
(cond
((deref ref-to-closed?)
(setref! ref-to-wait-queue

(enqueue (deref ref-to-wait-queue) th))
(run-next-thread))

(else
(setref! ref-to-closed? #t)
(th)))))))

signal-mutex : Mutex × Thread → FinalAnswer
(define signal-mutex

(lambda (m th)
(cases mutex m

(a-mutex (ref-to-closed? ref-to-wait-queue)
(let ((closed? (deref ref-to-closed?))

(wait-queue (deref ref-to-wait-queue)))
(if closed?

(if (empty? wait-queue)
(setref! ref-to-closed? #f)
(dequeue wait-queue
(lambda (first-waiting-th other-waiting-ths)

(place-on-ready-queue!
first-waiting-th)

(setref!
ref-to-wait-queue
other-waiting-ths)))))

(th))))))

Figure 5.22 wait-for-mutex and signal-mutex

5.5 Threads 191

Exercise 5.53 [� � �] Modify the thread package to include thread identifiers. Each new
thread is associated with a fresh thread identifier. When the child thread is spawned,
it is passed its thread identifier as a value, rather than the arbitrary value 28 used
in this section. The child’s number is also returned to the parent as the value of the
spawn expression. Instrument the interpreter to trace the creation of thread identi-
fiers. Check to see that the ready queue contains at most one thread for each thread
identifier. How can a child thread know its parent’s identifier? What should be done
about the thread identifier of the original program?

Exercise 5.54 [� �] Add to the interpreter of exercise 5.53 a kill facility. The kill
construct, when given a thread number, finds the corresponding thread on the ready
queue or any of the waiting queues and removes it. In addition, kill should return
a true value if the target thread is found and false if the thread number is not found
on any queue.

Exercise 5.55 [� �] Add to the interpreter of exercise 5.53 an interthread communica-
tion facility, in which each thread can send a value to another thread using its thread
identifier. A thread can receive messages when it chooses, blocking if no message has
been sent to it.

Exercise 5.56 [� �] Modify the interpreter of exercise 5.55 so that rather than sharing a
store, each thread has its own store. In such a language, mutexes can almost always be
avoided. Rewrite the example of this section in this language, without using mutexes.

Exercise 5.57 [� � �] There are lots of different synchronization mechanisms in your
favorite OS book. Pick three and implement them in this framework.

Exercise 5.58 [definitely �] Go off with your friends and have some pizza, but make
sure only one person at a time grabs a piece!

6 Continuation-Passing Style

In chapter 5, we took an interpreter and rewrote it so that all of the major
procedure calls were tail calls. By doing so, we guaranteed that the interpreter
uses at most a bounded amount of control context at any one time, no matter
how large or complex a program it is called upon to interpret. This property
is called iterative control behavior.

We achieved this goal by passing an extra parameter, the continuation, to
each procedure. This style of programming is called continuation-passing style
or CPS, and it is not restricted to interpreters.

In this chapter we develop a systematic method for transforming any pro-
cedure into an equivalent procedure whose control behavior is iterative. This
is accomplished by converting it into continuation-passing style.

6.1 Writing Programs in Continuation-Passing Style

We can use CPS for other things besides interpreters. Let’s consider an old
favorite, the factorial program:

(define fact
(lambda (n)

(if (zero? n) 1 (* n (fact (- n 1))))))

A continuation-passing version of factorial would look something like

(define fact
(lambda (n)

(fact/k n (end-cont))))

(define fact/k
(lambda (n cont)

(if (zero? n)
(apply-cont cont 1)
(fact/k (- n 1) (fact1-cont n cont)))))

194 6 Continuation-Passing Style

where

(apply-cont (end-cont) val) = val

(apply-cont (fact1-cont n cont) val)
= (apply-cont cont (* n val))

In this version, all the calls to fact/k and apply-cont are in tail position
and therefore build up no control context.

We can implement these continuations as data structures by writing

(define-datatype continuation continuation?
(end-cont)
(fact1-cont
(n integer?)
(cont continuation?)))

(define apply-cont
(lambda (cont val)
(cases continuation cont

(end-cont () val)
(fact1-cont (saved-n saved-cont)

(apply-cont saved-cont (* saved-n val))))))

We can transform this program in many ways. We could, for example,
registerize it, as shown in figure 6.1.

We could even trampoline this version, as shown in figure 6.2. If we did
this in an ordinary imperative language, we would of course replace the
trampoline by a proper loop.

However, our primary concern in this chapter will be what happens when
we use a procedural representation, as we did in figure 5.2. Recall that in the
procedural representation, a continuation is represented by its action under
apply-cont. The procedural representation looks like

(define end-cont
(lambda ()
(lambda (val) val)))

(define fact1-cont
(lambda (n saved-cont)
(lambda (val)

(apply-cont saved-cont (* n val)))))

(define apply-cont
(lambda (cont val)
(cont val)))

6.1 Writing Programs in Continuation-Passing Style 195

(define n ’uninitialized)
(define cont ’uninitialized)
(define val ’uninitialized)

(define fact
(lambda (arg-n)

(set! cont (end-cont))
(set! n arg-n)
(fact/k)))

(define fact/k
(lambda ()

(if (zero? n)
(begin

(set! val 1)
(apply-cont))

(begin
(set! cont (fact1-cont n cont))
(set! n (- n 1))
(fact/k)))))

(define apply-cont
(lambda ()

(cases continuation cont
(end-cont () val)
(fact1-cont (saved-n saved-cont)

(set! cont saved-cont)
(set! n saved-n)
(apply-cont)))))

Figure 6.1 fact/k registerized

We can do even better by taking each call to a continuation-builder in the
program and replacing it by its definition. This transformation is called inlin-
ing, because the definitions are expanded in-line. We also inline the calls to
apply-cont, so instead of writing (apply-cont cont val), we’ll just
write (cont val).

196 6 Continuation-Passing Style

(define n ’uninitialized)
(define cont ’uninitialized)
(define val ’uninitialized)
(define pc ’uninitialized)

(define fact
(lambda (arg-n)
(set! cont (end-cont))
(set! n arg-n)
(set! pc fact/k)
(trampoline!)
val))

(define trampoline!
(lambda ()
(if pc

(begin
(pc)
(trampoline!)))))

(define fact/k
(lambda ()
(if (zero? n)

(begin
(set! val 1)
(set! pc apply-cont))

(begin
(set! cont (fact1-cont n cont))
(set! n (- n 1))
(set! pc fact/k)))))

(define apply-cont
(lambda ()
(cases continuation cont

(end-cont ()
(set! pc #f))

(fact1-cont (saved-n saved-cont)
(set! cont saved-cont)
(set! n saved-n)
(set! pc apply-cont)))))

Figure 6.2 fact/k registerized and trampolined

6.1 Writing Programs in Continuation-Passing Style 197

If we inline all the uses of continuations in this way, we get

(define fact
(lambda (n)

(fact/k n (lambda (val) val))))

(define fact/k
(lambda (n cont)

(if (zero? n)
(cont 1)
(fact/k (- n 1) (lambda (val) (cont (* n val)))))))

We can read the definition of fact/k as:

If n is zero, send 1 to the continuation. Otherwise, evaluate fact of n− 1
in a continuation that calls the result val, and then sends to the continuation
the value (* n val).

The procedure fact/k has the property that (fact/k n g) = (g n!).
This is easy to show by induction on n. For the base step, when n = 0, we
calculate

(fact/k 0 g) = (g 1) = (g (fact 0))

For the induction step, we assume that (fact/k n g) = (g n!), for some
value of n and try to show that (fact/k (n + 1) g) = (g (n + 1)!). To do
this, we calculate:

(fact/k n + 1 g)
= (fact/k n (lambda (val) (g (* n + 1 val))))
= ((lambda (val) (g (* n + 1 val))) (by the induction hypothesis)

(fact n))
= (g (* n + 1 (fact n)))
= (g (fact n + 1))

This completes the induction.
Here the g appears as a context argument, as in section 1.3, and the prop-

erty that (fact/k n g) = (g n!) serves as the independent specification,
following our principle of No Mysterious Auxiliaries.

198 6 Continuation-Passing Style

Now let’s do the same thing for the Fibonacci sequence fib. We start with

(define fib
(lambda (n)
(if (< n 2)

1
(+

(fib (- n 1))
(fib (- n 2))))))

Here we have two recursive calls to fib, so we will need an end-cont
and two continuation-builders, one for each argument, just as we did for
difference expressions in section 5.1.

(define fib
(lambda (n)
(fib/k n (end-cont))))

(define fib/k
(lambda (n cont)
(if (< n 2)

(apply-cont cont 1)
(fib/k (- n 1) (fib1-cont n cont)))))

(apply-cont (end-cont) val) = val

(apply-cont (fib1-cont n cont) val1)
= (fib/k (- n 2) (fib2-cont val1 cont))

(apply-cont (fib2-cont val1 cont) val2)
= (apply-cont cont (+ val1 val2))

In the procedural representation we have

(define end-cont
(lambda ()
(lambda (val) val)))

(define fib1-cont
(lambda (n cont)
(lambda (val1)

(fib/k (- n 2) (fib2-cont val1 cont)))))

(define fib2-cont
(lambda (val1 cont)
(lambda (val2)

(apply-cont cont (+ val1 val2)))))

(define apply-cont
(lambda (cont val)
(cont val)))

6.1 Writing Programs in Continuation-Passing Style 199

If we inline all the uses of these procedures, we get

(define fib
(lambda (n)

(fib/k n (lambda (val) val))))

(define fib/k
(lambda (n cont)

(if (< n 2)
(cont 1)
(fib/k (- n 1)

(lambda (val1)
(fib/k (- n 2)
(lambda (val2)

(cont (+ val1 val2)))))))))

As we did for factorial, we can read this definition as

If n < 2, send 1 to the continuation. Otherwise, work on n − 1 in a
continuation that calls the result val1 and then works on n − 2 in a contin-
uation that calls the result val2 and then sends (+ val1 val2) to the
continuation.

It is easy to see, by the same reasoning we used for fact, that for any
g, (fib/k n g) = (g (fib n)). Here is an artificial example that extends
these ideas.

(lambda (x)
(cond

((zero? x) 17)
((= x 1) (f x))
((= x 2) (+ 22 (f x)))
((= x 3) (g 22 (f x)))
((= x 4) (+ (f x) 33 (g y)))
(else (h (f x) (- 44 y) (g y))))))

becomes
(lambda (x cont)

(cond
((zero? x) (cont 17))
((= x 1) (f x cont))
((= x 2) (f x (lambda (v1) (cont (+ 22 v1)))))
((= x 3) (f x (lambda (v1) (g 22 v1 cont))))
((= x 4) (f x (lambda (v1)

(g y (lambda (v2)
(cont (+ v1 33 v2))))))

(else (f x (lambda (v1)
(g y (lambda (v2)

(h v1 (- 44 y) v2 cont))))))))

where the procedures f, g, h, j, and p have been similarly transformed.

200 6 Continuation-Passing Style

• In the (zero? x) line, we return 17 to the continuation.

• In the (= x 1) line, we call f tail-recursively.

• In the (= x 2) line, we call f in an operand position of an addition.

• In the (= x 3) line, we call f in an operand position of a procedure call.

• In the (= x 4) line, we have two procedure calls in operand positions in
an addition.

• In the else line, we have two procedure calls in operand position inside
another procedure call.

From these examples, we can see a pattern emerging.

The CPS Recipe

To convert a program to continuation-passing style

1. Pass each procedure an extra parameter (typically cont or k).

2. Whenever the procedure returns a constant or variable, return that
value to the continuation instead, as we did with (cont 7) above.

3. Whenever a procedure call occurs in a tail position, call the proce-
dure with the same continuation cont.

4. Whenever a procedure call occurs in an operand position, evaluate
the procedure call in a new continuation that gives a name to the
result and continues with the computation.

These rules are informal, but they illustrate the patterns.

Exercise 6.1 [�] Consider figure 6.2 without (set! pc fact/k) in the definition of
fact/k and without (set! pc apply-cont) in the definition of apply-cont.
Why does the program still work?

Exercise 6.2 [�] Prove by induction on n that for any g, (fib/k n g) = (g (fib n)).

6.1 Writing Programs in Continuation-Passing Style 201

Exercise 6.3 [�] Rewrite each of the following Scheme expressions in continuation-
passing style. Assume that any unknown functions have also been rewritten in CPS.

1. (lambda (x y) (p (+ 8 x) (q y)))

2. (lambda (x y u v) (+ 1 (f (g x y) (+ u v))))

3. (+ 1 (f (g x y) (+ u (h v))))

4. (zero? (if a (p x) (p y)))

5. (zero? (if (f a) (p x) (p y)))

6. (let ((x (let ((y 8)) (p y)))) x)

7. (let ((x (if a (p x) (p y)))) x)

Exercise 6.4 [� �] Rewrite each of the following procedures in continuation-passing
style. For each procedure, do this first using a data-structure representation of contin-
uations, then with a procedural representation, and then with the inlined procedural
representation. Last, write the registerized version. For each of these four versions,
test to see that your implementation is tail-recursive by defining end-cont by

(apply-cont (end-cont) val)
= (begin

(eopl:printf "End of computation.~%")
(eopl:printf "This sentence should appear only once.~%")
val)

as we did in chapter 5.

1. remove-first (section 1.2.3).

2. list-sum (section 1.3).

3. occurs-free? (section 1.2.4).

4. subst (section 1.2.5).

Exercise 6.5 [�] When we rewrite an expression in CPS, we choose an evaluation
order for the procedure calls in the expression. Rewrite each of the preceding exam-
ples in CPS so that all the procedure calls are evaluated from right to left.

Exercise 6.6 [�] How many different evaluation orders are possible for the proce-
dure calls in (lambda (x y) (+ (f (g x)) (h (j y))))? For each evalua-
tion order, write a CPS expression that calls the procedures in that order.

Exercise 6.7 [� �] Write out the procedural and the inlined representations for the
interpreter in figures 5.4, 5.5, and 5.6.

202 6 Continuation-Passing Style

Exercise 6.8 [� � �] Rewrite the interpreter of section 5.4 using a procedural and
inlined representation. This is challenging because we effectively have two observers,
apply-cont and apply-handler. As a hint, consider modifying the recipe on
page 6.1 so that we add to each procedure two extra arguments, one representing the
behavior of the continuation under apply-cont and one representing its behavior
under apply-handler.

Sometimes we can find clever representations of continuations. Let’s
reconsider the version of fact with the procedural representation of con-
tinuations. There we had two continuation builders, which we wrote as

(define end-cont
(lambda ()
(lambda (val) val)))

(define fact1-cont
(lambda (n cont)
(lambda (val) (cont (* n val)))))

(define apply-cont
(lambda (cont val)
(cont val)))

In this system, all a continuation does is multiply its argument by some
number. (end-cont)multiplies its argument by 1, and if cont multiplies its
value by k, then (fact1 n cont) multiplies its value by k ∗ n.

So every continuation is of the form (lambda (val) (* k val)). This
means we could represent such a continuation simply by its lone free vari-
able, the number k. In this representation we would have

(define end-cont
(lambda ()
1))

(define fact1-cont
(lambda (n cont)
(* cont n)))

(define apply-cont
(lambda (cont val)
(* cont val)))

6.2 Tail Form 203

If we inline these definitions into our original definition of fact/k, and
use the property that (* cont 1) = cont, we get

(define fact
(lambda (n)

(fact/k n 1)))

(define fact/k
(lambda (n cont)

(if (zero? n)
cont
(fact/k (- n 1) (* cont n)))))

But this is just the same as fact-iter (page 139)! So we see that an accu-
mulator is often just a representation of a continuation. This is impressive.
Quite a few classic program optimizations turn out to be instances of this
idea.

Exercise 6.9 [�] What property of multiplication makes this program optimization
possible?

Exercise 6.10 [�] For list-sum, formulate a succinct representation of the continua-
tions, like the one for fact/k above.

6.2 Tail Form

In order to write down a program for converting to continuation-passing
style, we need to identify the input and output languages. For our input lan-
guage, we choose the language LETREC, augmented by having multiargu-
ment procedures and multideclaration letrec expressions. Its grammar is
shown in figure 6.3. We call this language CPS-IN. To distinguish the expres-
sions of this language from those of our output language, we call these input
expressions.

To define the class of possible outputs from our CPS conversion algorithm,
we need to identify a subset of CPS-IN in which procedure calls never build
any control context.

Recall our principle from chapter 5:

It is evaluation of operands, not the calling of procedures, that
makes the control context grow.

204 6 Continuation-Passing Style

Program ::= InpExp
a-program (exp1)

InpExp ::= Number
const-exp (num)

InpExp ::= -(InpExp , InpExp)
diff-exp (exp1 exp2)

InpExp ::= zero?(InpExp)
zero?-exp (exp1)

InpExp ::= if InpExp then InpExp else InpExp
if-exp (exp1 exp2 exp3)

InpExp ::= Identifier
var-exp (var)

InpExp ::= let Identifier = InpExp in InpExp
let-exp (var exp1 body)

InpExp ::= letrec {Identifier ({Identifier}∗(,)) = InpExp}∗ in InpExp
letrec-exp (p-names b-varss p-bodies letrec-body)

InpExp ::= proc ({Identifier}∗(,)) InpExp
proc-exp (vars body)

InpExp ::= (InpExp {InpExp}∗)
call-exp (rator rands)

Figure 6.3 Grammar for CPS-IN

Thus in

(define fact
(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1))))))

it is the position of the call to fact as an operand that requires the creation of
a control context. By contrast, in

6.2 Tail Form 205

(define fact-iter
(lambda (n)

(fact-iter-acc n 1)))

(define fact-iter-acc
(lambda (n a)

(if (zero? n) a (fact-iter-acc (- n 1) (* n a)))))

none of the procedure calls is in operand position. We say these calls are in
tail position because their value is the result of the whole call. We refer to
them as tail calls.

We can also recall the Tail Calls Don’t Grow Control Context principle:

Tail Calls Don’t Grow Control Context

If the value of exp1 is returned as the value of exp2, then exp1 and exp2
should run in the same continuation.

We say that an expression is in tail form if every procedure call, and every
expression containing a procedure call, is in tail position. This condition
implies that no procedure call builds control context.

Hence in Scheme

(if (zero? x) (f y) (g z))

is in tail form, as is

(if b
(if (zero? x) (f y) (g z))
(h u))

but

(+
(if (zero? x) (f y) (g z))
37)

is not in tail form, since the if expression, which contains a procedure call,
is not in tail position.

In general, we must understand the meaning of a language in order to
determine its tail positions. A subexpression in tail position has the property
that if it is evaluated, its value immediately becomes the value of the entire

206 6 Continuation-Passing Style

zero?(O)
-(O, O)
if O then T else T
let Var = O in T
letrec {Var ({Var}∗(,)) = T}∗ in T
proc ({Var}∗(,)) T
(O O . . . O)

Figure 6.4 Tail and operand positions in CPS-IN. Tail positions are marked with T.
Operand positions are marked with O.

expression. An expression may have more than one tail position. For exam-
ple, an if expression may choose either the true or the false branch. For a
subexpression in tail position, no information need be saved, and therefore
no control context need be built.

The tail positions for CPS-IN are shown in figure 6.4. The value of each
subexpression in tail position could become the value of the entire expres-
sion. In the continuation-passing interpreter, the subexpressions in operand
positions are the ones that require building new continuations. The subex-
pressions in tail position are evaluated in the same continuation as the origi-
nal expression, as illustrated on page 152.

We use this distinction to design a target language CPS-OUT for our CPS
conversion algorithm. The grammar for this language is shown in figure 6.5.
This grammar defines a subset of CPS-IN, but with a different grammar. Its
production names always begin with cps-, so they will not be confused with
the production names in CPS-IN.

The new grammar has two nonterminals, SimpleExp and TfExp. It is
designed so that expressions in SimpleExp are guaranteed never to contain
any procedure calls, and so that expressions in TfExp are guaranteed to be in
tail form.

Expressions in SimpleExp are guaranteed to never contain any procedure
calls, so they correspond roughly to simple straight-line code, and for our
purposes we consider them too simple to require any use of the control
stack. Simple expressions include proc expressions, since a proc expression
returns immediately with a procedure value, but the body of that procedure
must be in tail form.

6.2 Tail Form 207

A continuation-passing interpreter for tail-form expressions is shown in
figure 6.6. Since procedures in this language take multiple arguments, we
use extend-env* from exercise 2.10 to create multiple bindings, and we
similarly extend extend-env-rec to get extend-env-rec*.

In this interpreter, all the recursive calls are in tail position (in Scheme), so
running the interpreter builds no control context in Scheme. (This isn’t quite
true: the procedure value-of-simple-exp (exercise 6.11) builds control
context in Scheme, but that can be fixed (see exercise 6.18).)

More importantly, the interpreter creates no new continuations. The
procedure value-of/k takes one continuation argument and passes it
unchanged in every recursive call. So we could easily have removed the
continuation argument entirely.

Of course, there is no completely general way of determining whether the
control behavior of a procedure is iterative or not. Consider

(lambda (n)
(if (strange-predicate? n)

(fact n)
(fact-iter n)))

This procedure is iterative only if strange-predicate? returns false for
all sufficiently large values of n. But it is not always possible to determine the
truth or falsity of this condition, even if it is possible to examine the code of
strange-predicate?. Therefore the best we can hope for is to make sure
that no procedure call in the program will build up control context, whether
or not it is actually executed.

Exercise 6.11 [�] Complete the interpreter of figure 6.6 by writing value-of-
simple-exp.

Exercise 6.12 [�] Determine whether each of the following expressions is simple.

1. -((f -(x,1)),1)

2. (f -(-(x,y),1))

3. if zero?(x) then -(x,y) else -(-(x,y),1)

4. let x = proc (y) (y x) in -(x,3)

5. let f = proc (x) x in (f 3)

208 6 Continuation-Passing Style

Program ::= TfExp
a-program (exp1)

SimpleExp ::= Number
const-exp (num)

SimpleExp ::= Identifier
var-exp (var)

SimpleExp ::= -(SimpleExp , SimpleExp)
cps-diff-exp (simple1 simple2)

SimpleExp ::= zero?(SimpleExp)
cps-zero?-exp (simple1)

SimpleExp ::= proc ({Identifier}∗) TfExp
cps-proc-exp (vars body)

TfExp ::= SimpleExp
simple-exp->exp (simple-exp1)

TfExp ::= let Identifier = SimpleExp in TfExp
cps-let-exp (var simple1 body)

TfExp ::= letrec {Identifier ({Identifier}∗(,)) = TfExp}∗ in TfExp
cps-letrec-exp (p-names b-varss p-bodies body)

TfExp ::= if SimpleExp then TfExp else TfExp
cps-if-exp (simple1 body1 body2)

TfExp ::= (SimpleExp {SimpleExp}∗)
cps-call-exp (rator rands)

Figure 6.5 Grammar for CPS-OUT

6.2 Tail Form 209

value-of/k : TfExp × Env × Cont → FinalAnswer
(define value-of/k

(lambda (exp env cont)
(cases tfexp exp
(simple-exp->exp (simple)

(apply-cont cont
(value-of-simple-exp simple env)))

(let-exp (var rhs body)
(let ((val (value-of-simple-exp rhs env)))

(value-of/k body
(extend-env (list var) (list val) env)
cont)))

(letrec-exp (p-names b-varss p-bodies letrec-body)
(value-of/k letrec-body

(extend-env-rec** p-names b-varss p-bodies env)
cont))

(if-exp (simple1 body1 body2)
(if (expval->bool (value-of-simple-exp simple1 env))

(value-of/k body1 env cont)
(value-of/k body2 env cont)))

(call-exp (rator rands)
(let ((rator-proc

(expval->proc
(value-of-simple-exp rator env)))

(rand-vals
(map
(lambda (simple)

(value-of-simple-exp simple env))
rands)))

(apply-procedure/k rator-proc rand-vals cont))))))

apply-procedure : Proc × ExpVal → ExpVal
(define apply-procedure/k

(lambda (proc1 args cont)
(cases proc proc1
(procedure (vars body saved-env)

(value-of/k body
(extend-env* vars args saved-env)
cont)))))

Figure 6.6 Interpreter for tail-form expressions in CPS-OUT.

210 6 Continuation-Passing Style

Exercise 6.13 [�] Translate each of these expressions in CPS-IN into continuation-
passing style using the CPS recipe on page 200 above. Test your transformed pro-
grams by running them using the interpreter of figure 6.6. Be sure that the original
and transformed versions give the same answer on each input.

1. removeall.

letrec
removeall(n,s) =
if null?(s)
then emptylist
else if number?(car(s))

then if equal?(n,car(s))
then (removeall n cdr(s))
else cons(car(s),

(removeall n cdr(s)))
else cons((removeall n car(s)),

(removeall n cdr(s)))

2. occurs-in?.

letrec
occurs-in?(n,s) =
if null?(s)
then 0
else if number?(car(s))

then if equal?(n,car(s))
then 1
else (occurs-in? n cdr(s))

else if (occurs-in? n car(s))
then 1
else (occurs-in? n cdr(s))

3. remfirst. This uses occurs-in? from the preceding example.

letrec
remfirst(n,s) =
letrec
loop(s) =
if null?(s)
then emptylist
else if number?(car(s))

then if equal?(n,car(s))
then cdr(s)
else cons(car(s),(loop cdr(s)))

else if (occurs-in? n car(s))
then cons((remfirst n car(s)),

cdr(s))
else cons(car(s),

(remfirst n cdr(s)))
in (loop s)

6.2 Tail Form 211

4. depth.

letrec
depth(s) =
if null?(s)
then 1
else if number?(car(s))

then (depth cdr(s))
else if less?(add1((depth car(s))),

(depth cdr(s)))
then (depth cdr(s))
else add1((depth car(s)))

5. depth-with-let.

letrec
depth(s) =
if null?(s)
then 1
else if number?(car(s))

then (depth cdr(s))
else let dfirst = add1((depth car(s)))

drest = (depth cdr(s))
in if less?(dfirst,drest)

then drest
else dfirst

6. map.

letrec
map(f, l) = if null?(l)

then emptylist
else cons((f car(l)),

(map f cdr(l)))
square(n) = *(n,n)
in (map square list(1,2,3,4,5))

7. fnlrgtn. This procedure takes an n-list, like an s-list (page 9), but with numbers
instead of symbols, and a number n and returns the first number in the list (in left-
to-right order) that is greater than n. Once the result is found, no further elements
in the list are examined. For example,

(fnlrgtn list(1,list(3,list(2),7,list(9)))
6)

finds 7.

212 6 Continuation-Passing Style

8. every. This procedure takes a predicate and a list and returns a true value if and
only if the predicate holds for each list element.

letrec
every(pred, l) =
if null?(l)
then 1
else if (pred car(l))

then (every pred cdr(l))
else 0

in (every proc(n)greater?(n,5) list(6,7,8,9))

Exercise 6.14 [�] Complete the interpreter of figure 6.6 by supplying definitions for
value-of-program and apply-cont.

Exercise 6.15 [�] Observe that in the interpreter of the preceding exercise, there is
only one possible value for cont. Use this observation to remove the cont argument
entirely.

Exercise 6.16 [�] Registerize the interpreter of figure 6.6.

Exercise 6.17 [�] Trampoline the interpreter of figure 6.6.

Exercise 6.18 [� �] Modify the grammar of CPS-OUT so that a simple diff-exp or
zero?-exp can have only a constant or variable as an argument. Thus in the result-
ing language value-of-simple-exp can be made nonrecursive.

Exercise 6.19 [� �] Write a Scheme procedure tail-form? that takes the syntax tree
of a program in CPS-IN, expressed in the grammar of figure 6.3, and determines
whether the same string would be in tail form according to the grammar of figure 6.5.

6.3 Converting to Continuation-Passing Style

In this section we develop an algorithm for transforming any program in
CPS-IN to CPS-OUT.

Like the continuation-passing interpreter, our translator will Follow the
Grammar. Also like the continuation-passing interpreter, our translator will
take an additional argument that represents a continuation. This additional
argument will be a simple expression that represents the continuation.

As we have done in the past, we will proceed from examples to a specifi-
cation, and from a specification to a program. Figure 6.7 shows a somewhat
more detailed version of the motivating examples, written in Scheme so that
they will be similar to those of the preceding section.

6.3 Converting to Continuation-Passing Style 213

(lambda (x)
(cond

((zero? x) 17)
((= x 1) (f (- x 13) 7))
((= x 2) (+ 22 (- x 3) x))
((= x 3) (+ 22 (f x) 37))
((= x 4) (g 22 (f x)))
((= x 5) (+ 22 (f x) 33 (g y)))
(else (h (f x) (- 44 y) (g y))))))

becomes

(lambda (x k)
(cond

((zero? x) (k 17))
((= x 1) (f (- x 13) 7 k))
((= x 2) (k (+ 22 (- x 3) x)))
((= x 3) (f x (lambda (v1) (k (+ 22 v1 37)))))
((= x 4) (f x (lambda (v1) (g 22 v1 k))))
((= x 5) (f x (lambda (v1)

(g y (lambda (v2)
(k (+ 22 v1 33 v2))))))

(else (f x (lambda (v1)
(g y (lambda (v2)

(h v1 (- 44 y) v2 k))))))))

Figure 6.7 Motivating examples for CPS conversion (in Scheme)

The first case is that of a constant. Constants are just sent to the continua-
tion, as in the (zero? x) line above.

(cps-of-exp n K) = (K n)

Here K is some simple-exp that denotes a continuation.
Similarly, variables are just sent to the continuation.

(cps-of-exp var K) = (K var)

214 6 Continuation-Passing Style

Of course, the input and output of our algorithm will be abstract syntax
trees, so we should have written the builders for the abstract syntax instead
of the concrete syntax, like

(cps-of-exp (const-exp n) K)
= (make-send-to-cont K (cps-const-exp n))

(cps-of-exp (var-exp var) K)
= (make-send-to-cont K (cps-var-exp var))

where

make-send-to-cont : SimpleExp × SimpleExp → TfExp
(define make-send-to-cont

(lambda (k-exp simple-exp)
(cps-call-exp k-exp (list simple-exp))))

We need the list since in CPS-OUT every call expression takes a list of
operands.

We will, however, continue to use concrete syntax in our specifications
because the concrete syntax is generally easier to read.

What about procedures? We convert a procedure, like the (lambda (x)
...) in figure 6.7, by adding an additional parameter k and converting the
body to send its value to the continuation k. This is just what we did in
figure 6.7. So

proc (var1, ..., varn) exp

becomes

proc (var1, ..., varn, k) (cps-of-exp exp k)

as in the figure. However, this doesn’t quite finish the job. Our goal was to
produce code that would evaluate the proc expression and send the result
to the continuation K. So the entire specification for a proc expression is

(cps-of-exp <<proc (var1, ..., varn) exp>> K)
= (K <<proc (var1, ..., varn, k) (cps-of-exp exp k)>>)

Here k is a fresh variable, and K is an arbitrary simple expression that
denotes a continuation.

6.3 Converting to Continuation-Passing Style 215

What about expressions that have operands? Let us add, for the moment,
a sum expression to our language, with arbitrarily many operands. To do
this, we add to the grammar of CPS-IN the production

Expression ::= +({InpExp}∗(,))

sum-exp (exps)

and to the grammar of CPS-OUT the production

SimpleExp ::= +({SimpleExp}∗(,))

cps-sum-exp (simple-exps)

This new production preserves the property that no procedure call ever
appears inside a simple expression.

What are the possibilities for (cps-of-exp «+(exp1, ..., expn)»
K)? It could be that all of exp1, . . . , expn are simple, as in the (= x 2)
case in figure 6.7. Then the entire sum expression is simple, and we can just
pass it to the continuation. We let simp denote a simple expression. In this
case we can say

(cps-of-exp <<+(simp1, ..., simpn)>> K)
= (K +(simp1, ..., simpn))

What if one of the operands is nonsimple? Then we need to evaluate it in
a continuation that gives a name to its value and proceeds with the sum, as
in the (= x 3) case above. There the second operand is the first nonsimple
one. Then our CPS converter should have the property that

(cps-of-exp <<+(simp1, exp2, simp3, ..., simpn)>> K)
= (cps-of-exp exp2

<<proc (var2) (K +(simp1, var2, simp3, ..., simpn))>>

If exp2 is just a procedure call, then the output will look like the one
in the figure. But exp2 might be more complicated, so we recur, calling
cps-of-exp on exp2 and the larger continuation

proc (var2) (K +(simp1, var2, simp3, ..., simpn))

216 6 Continuation-Passing Style

There might, however, be other nonsimple operands in the sum expres-
sion, as there are in the (= x 5) case. So instead of simply using the contin-
uation

proc (var2) (K +(simp1, var2, simp3, ..., simpn))

we need to recur on the later arguments as well. We can summarize this rule
as

(cps-of-exp <<+(simp1, exp2, exp3, ..., expn)>> K)
= (cps-of-exp exp2

<<proc (var2)
(cps-of-exp <<+(simp1, var2, exp3, ..., expn)>> K))

Each of the recursive calls to cps-of-exp is guaranteed to terminate. The
first call terminates because exp2 is smaller than the original expression. The
second call terminates because its argument is also smaller than the original:
var2 is always smaller than exp2.

For example, looking at the (= x 5) line and using the syntax of CPS-IN,
we have

(cps-of-exp <<+((f x), 33, (g y))>> K)
= (cps-of-exp <<(f x)>>

<<proc (v1)
(cps-of-exp +(v1, 33, (g y)) K)>>)

= (cps-of-exp <<(f x)>>
<<proc (v1)

(cps-of-exp <<(g y)>>
<<proc (v2)

(cps-of-exp <<+(v1, 33, v2)>> K)))
= (cps-of-exp <<(f x)>>

<<proc (v1)
(cps-of-exp <<(g y)>>

<<proc (v2)
(K <<+(v1, 33, v2)>>)))

= (f x
proc (v1)
(g y
proc (v2)
(K +(v1, 33, v2))))

6.3 Converting to Continuation-Passing Style 217

Procedure calls work the same way. If both the operator and all the
operands are simple, then we just call the procedure with a continuation
argument, as in the (= x 2) line.

(cps-of-exp <<(simp0 simp1 ... simpn)>> K)
= (simp0 simp1 ... simpn K)

If, on the other hand, one of the operands is nonsimple, then we must
cause it to be evaluated first, as in the (= x 4) line.

(cps-of-exp <<(simp0 simp1 exp2 exp3 ... expn)>> K)
= (cps-of-exp exp2

<<proc (var2)
(cps-of-exp <<(simp0 simp1 var2 exp3 ... expn)>> K)>>)

And, as before, the second call to cps-of-exp will recur down the pro-
cedure call, calling cps-of-exp for each of the nonsimple arguments, until
there are only simple arguments left.

Here is how these rules handle the (= x 5) example, written in CPS-IN.

(cps-of-exp <<(h (f x) -(44,y) (g y))>> K)
= (cps-of-exp <<(f x)>>

<<proc (v1)
(cps-of-exp <<(h v1 -(44,y) (g y))>> K)>>)

= (f x
proc (v1)
(cps-of-exp <<(h v1 -(44,y) (g y))>> K)>>)

= (f x
proc (v1)
(cps-of-exp <<(g y)>>
<<proc (v2)

(cps-of-exp <<(h v1 -(44,y) v2)>> K)))
= (f x

proc (v1)
(g y
proc (v2)
(cps-of-exp <<(h v1 -(44,y) v2)>> K)))

= (f x
proc (v1)
(g y
proc (v2)
(h v1 -(44,y) v2 K)))

The specifications for sum expressions and procedure calls follow a similar
pattern: they find the first nonsimple operand and recur on that operand

218 6 Continuation-Passing Style

and on the modified list of operands. This works for any expression that
evaluates its operands. If complex-exp is some CPS-IN expression that
evaluates its operands, then we should have

(cps-of-exp (complex-exp simp0 simp1 exp2 exp3 ... expn) K)
= (cps-of-exp exp2

<<proc (var2)
(cps-of-exp
(complex-exp simp0 simp1 var2 exp3 ... expn)
K)>>)

where var2 is a fresh variable.
The only time that the treatment of sum expressions and procedure calls

differs is when the arguments are all simple. In that case, we need to convert
each of the arguments to a CPS-OUT simple-exp and produce a tail-form
expression with the results.

We can encapsulate this behavior into the procedure cps-of-exps,
shown in figure 6.8. Its arguments are a list of input expressions and a pro-
cedure builder. It finds the position of the first nonsimple expression in
the list, using the procedure list-index from exercise 1.23. If there is such
a nonsimple expression, then it is converted in a continuation that gives the
value a name (the identifier bound to var) and recurs down the modified list
of expressions.

If there are no nonsimple expressions, then we would like to apply
builder to the list of expressions. However, although these expressions
are simple, they are still in the grammar of CPS-IN. Therefore we con-
vert each expression to the grammar of CPS-OUT using the procedure
cps-of-simple-exp. We then send the list of SimpleExps to builder.
(list-set is described in exercise 1.19.)

The procedure inp-exp-simple? takes an expression in CPS-IN and
determines whether its string would be parseable as a SimpleExp. It uses the
procedure every? from exercise 1.24. The expression (every? pred lst)
returns #t if every element of lst satisfies pred, and returns #f otherwise.

The code for cps-of-simple-exp is straightforward and is shown in
figure 6.9. It also translates the body of a proc-exp into CPS, which is nec-
essary for the output to be a SimpleExp.

We can generate tail-form expressions for sum expressions and procedure
calls using cps-of-exps.

6.3 Converting to Continuation-Passing Style 219

cps-of-exps : Listof(InpExp) × (Listof(InpExp) → TfExp) → TfExp
(define cps-of-exps

(lambda (exps builder)
(let cps-of-rest ((exps exps))

cps-of-rest : Listof(InpExp)→ TfExp
(let ((pos (list-index

(lambda (exp)
(not (inp-exp-simple? exp)))

exps)))
(if (not pos)

(builder (map cps-of-simple-exp exps))
(let ((var (fresh-identifier ’var)))
(cps-of-exp

(list-ref exps pos)
(cps-proc-exp (list var)

(cps-of-rest
(list-set exps pos (var-exp var)))))))))))

inp-exp-simple? : InpExp → Bool
(define inp-exp-simple?

(lambda (exp)
(cases expression exp
(const-exp (num) #t)
(var-exp (var) #t)
(diff-exp (exp1 exp2)

(and (inp-exp-simple? exp1) (inp-exp-simple? exp2)))
(zero?-exp (exp1) (inp-exp-simple? exp1))
(proc-exp (ids exp) #t)
(sum-exp (exps) (every? inp-exp-simple? exps))
(else #f))))

Figure 6.8 cps-of-exps

cps-of-diff-exp : Listof(InpExp) × SimpleExp → TfExp
(define cps-of-sum-exp

(lambda (exps k-exp)
(cps-of-exps exps
(lambda (simples)

(make-send-to-cont
k-exp
(cps-sum-exp simples))))))

220 6 Continuation-Passing Style

cps-of-simple-exp : InpExp → SimpleExp
usage: assumes (inp-exp-simple? exp).
(define cps-of-simple-exp

(lambda (exp)
(cases expression exp

(const-exp (num) (cps-const-exp num))
(var-exp (var) (cps-var-exp var))
(diff-exp (exp1 exp2)

(cps-diff-exp
(cps-of-simple-exp exp1)
(cps-of-simple-exp exp2)))

(zero?-exp (exp1)
(cps-zero?-exp (cps-of-simple-exp exp1)))

(proc-exp (ids exp)
(cps-proc-exp (append ids (list ’k%00))
(cps-of-exp exp (cps-var-exp ’k%00))))

(sum-exp (exps)
(cps-sum-exp (map cps-of-simple-exp exps)))

(else
(report-invalid-exp-to-cps-of-simple-exp exp)))))

Figure 6.9 cps-of-simple-exp

cps-of-call-exp : InpExp × Listof(InpExp) × SimpleExp → TfExp
(define cps-of-call-exp

(lambda (rator rands k-exp)
(cps-of-exps (cons rator rands)

(lambda (simples)
(cps-call-exp
(car simples)
(append (cdr simples) (list k-exp)))))))

We can now write the rest of our CPS translator (figures 6.10–6.12). It
Follows the Grammar. When the expression is always simple, as for con-
stants, variables, and procedures, we generate the code immediately using
make-send-to-cont. Otherwise, we call an auxiliary procedure. Each
auxiliary procedure calls cps-of-exps to evaluate its subexpressions, sup-
plying an appropriate builder to construct the innermost portion of the CPS
output. The one exception is cps-of-letrec-exp, which has no imme-
diate subexpressions, so it generates the CPS output directly. Finally, we
translate a program by calling cps-of-exps on the whole program, with a
builder that just returns the value of the simple.

6.3 Converting to Continuation-Passing Style 221

For the following exercises, make sure that your output expressions are in
tail form by running them using the grammar and interpreter for CPS-OUT.

Exercise 6.20 [�] Our procedure cps-of-exps causes subexpressions to be evalu-
ated from left to right. Modify cps-of-exps so that subexpressions are evaluated
from right to left.

Exercise 6.21 [�] Modify cps-of-call-exp so that the operands are evaluated
from left to right, followed by the operator.

Exercise 6.22 [�] Sometimes, when we generate (K simp), K is already a proc-exp.
So instead of generating

(proc (var1) ... simp)

we could generate

let var1 = simp
in ...

This leads to CPS code with the property that it never contains a subexpression of the
form

(proc (var) exp1

simp)

unless that subexpression was in the original expression.

Modify make-send-to-cont to generate this better code. When does the new rule
apply?

Exercise 6.23 [� �] Observe that our rule for if makes two copies of the continuation
K, so in a nested if the size of the transformed program can grow exponentially.
Run an example to confirm this observation. Then show how this may be avoided by
changing the transformation to bind a fresh variable to K.

Exercise 6.24 [� �] Add lists to the language (exercise 3.10). Remember that the argu-
ments to a list are not in tail position.

Exercise 6.25 [� �] Extend CPS-IN so that a let expression can declare an arbitrary
number of variables (exercise 3.16).

Exercise 6.26 [� �] A continuation variable introduced by cps-of-exps will only
occur once in the continuation. Modify make-send-to-cont so that instead of gen-
erating

let var1 = simp1

in T

as in exercise 6.22, it generates T[simp1/var1], where the notation E1[E2/var] means
expression E1 with every free occurrence of the variable var replaced by E2.

222 6 Continuation-Passing Style

cps-of-exp : InpExp × SimpleExp → TfExp
(define cps-of-exp

(lambda (exp k-exp)
(cases expression exp

(const-exp (num)
(make-send-to-cont k-exp (cps-const-exp num)))

(var-exp (var)
(make-send-to-cont k-exp (cps-var-exp var)))

(proc-exp (vars body)
(make-send-to-cont k-exp
(cps-proc-exp (append vars (list ’k%00))

(cps-of-exp body (cps-var-exp ’k%00)))))
(zero?-exp (exp1)

(cps-of-zero?-exp exp1 k-exp))
(diff-exp (exp1 exp2)

(cps-of-diff-exp exp1 exp2 k-exp))
(sum-exp (exps)

(cps-of-sum-exp exps k-exp))
(if-exp (exp1 exp2 exp3)

(cps-of-if-exp exp1 exp2 exp3 k-exp))
(let-exp (var exp1 body)

(cps-of-let-exp var exp1 body k-exp))
(letrec-exp (p-names b-varss p-bodies letrec-body)

(cps-of-letrec-exp
p-names b-varss p-bodies letrec-body k-exp))

(call-exp (rator rands)
(cps-of-call-exp rator rands k-exp)))))

cps-of-zero?-exp : InpExp × SimpleExp → TfExp
(define cps-of-zero?-exp

(lambda (exp1 k-exp)
(cps-of-exps (list exp1)

(lambda (simples)
(make-send-to-cont
k-exp
(cps-zero?-exp

(car simples)))))))

Figure 6.10 cps-of-exp, part 1

6.3 Converting to Continuation-Passing Style 223

cps-of-diff-exp : InpExp × InpExp × SimpleExp → TfExp
(define cps-of-diff-exp

(lambda (exp1 exp2 k-exp)
(cps-of-exps
(list exp1 exp2)
(lambda (simples)

(make-send-to-cont
k-exp
(cps-diff-exp
(car simples)
(cadr simples)))))))

cps-of-if-exp : InpExp × InpExp × InpExp × SimpleExp → TfExp
(define cps-of-if-exp

(lambda (exp1 exp2 exp3 k-exp)
(cps-of-exps (list exp1)
(lambda (simples)

(cps-if-exp (car simples)
(cps-of-exp exp2 k-exp)
(cps-of-exp exp3 k-exp))))))

cps-of-let-exp : Var × InpExp × InpExp × SimpleExp → TfExp
(define cps-of-let-exp

(lambda (id rhs body k-exp)
(cps-of-exps (list rhs)
(lambda (simples)

(cps-let-exp id
(car simples)
(cps-of-exp body k-exp))))))

cps-of-letrec-exp :
Listof(Var) × Listof(Listof(Var)) × Listof(InpExp) × SimpleExp → TfExp

(define cps-of-letrec-exp
(lambda (p-names b-varss p-bodies letrec-body k-exp)

(cps-letrec-exp
p-names
(map

(lambda (b-vars) (append b-vars (list ’k%00)))
b-varss)

(map
(lambda (p-body)

(cps-of-exp p-body (cps-var-exp ’k%00)))
p-bodies)

(cps-of-exp letrec-body k-exp))))

Figure 6.11 cps-of-exp, part 2

224 6 Continuation-Passing Style

cps-of-program : InpExp → TfExp
(define cps-of-program

(lambda (pgm)
(cases program pgm

(a-program (exp1)
(cps-a-program
(cps-of-exps (list exp1)

(lambda (new-args)
(simple-exp->exp (car new-args)))))))))

Figure 6.12 cps-of-program

Exercise 6.27 [� �] As it stands, cps-of-let-exp will generate a useless let
expression. (Why?) Modify this procedure so that the continuation variable is the
same as the let variable. Then if exp1 is nonsimple,

(cps-of-exp <<let var1 = exp1 in exp2>> K)
= (cps-of-exp exp1 <<proc (var1) (cps-of-exp exp2 K)>>

Exercise 6.28 [�] Food for thought: imagine a CPS transformer for Scheme programs,
and imagine that you apply it to the first interpreter from chapter 3. What would the
result look like?

Exercise 6.29 [� �] Consider this variant of cps-of-exps.

(define cps-of-exps
(lambda (exps builder)
(let cps-of-rest ((exps exps) (acc ’()))

cps-of-rest : Listof(InpExp) × Listof(SimpleExp) → TfExp
(cond

((null? exps) (builder (reverse acc)))
((inp-exp-simple? (car exps))
(cps-of-rest (cdr exps)
(cons

(cps-of-simple-exp (car exps))
acc)))

(else
(let ((var (fresh-identifier ’var)))
(cps-of-exp (car exps)

(cps-proc-exp (list var)
(cps-of-rest (cdr exps)
(cons

(cps-of-simple-exp (var-exp var))
acc))))))))))

Why is this variant of cps-of-exp more efficient than the one in figure 6.8?

6.3 Converting to Continuation-Passing Style 225

Exercise 6.30 [� �] A call to cps-of-expswith a list of expressions of length one can
be simplified as follows:

(cps-of-exps (list exp) builder)
= (cps-of-exp/ctx exp (lambda (simp) (builder (list simp))))

where

cps-of-exp/ctx : InpExp × (SimpleExp → TfExp) → TfExp
(define cps-of-exp/ctx

(lambda (exp context)
(if (inp-exp-simple? exp)
(context (cps-of-simple-exp exp))
(let ((var (fresh-identifier ’var)))

(cps-of-exp exp
(cps-proc-exp (list var)
(context (cps-var-exp var))))))))

Thus, we can simplify occurrences of (cps-of-exps (list ...)), since the
number of arguments to list is known. Therefore the definition of, for exam-
ple, cps-of-diff-exp could be defined with cps-of-exp/ctx instead of with
cps-of-exps.

(define cps-of-diff-exp
(lambda (exp1 exp2 k-exp)

(cps-of-exp/ctx exp1
(lambda (simp1)

(cps-of-exp/ctx exp2
(lambda (simp2)
(make-send-to-cont k-exp

(cps-diff-exp simp1 simp2))))))))

For the use of cps-of-exps in cps-of-call-exp, we can use cps-of-exp/ctx
on the rator, but we still need cps-of-exps for the rands. Remove all other
occurrences of cps-of-exps from the translator.

Exercise 6.31 [� � �] Write a translator that takes the output of cps-of-program
and produces an equivalent program in which all the continuations are represented
by data structures, as in chapter 5. Represent data structures like those constructed
using define-datatype as lists. Since our language does not have symbols, you
can use an integer tag in the car position to distinguish the variants of a data type.

Exercise 6.32 [� � �] Write a translator like the one in exercise 6.31, except that it rep-
resents all procedures by data structures.

Exercise 6.33 [� � �] Write a translator that takes the output from exercise 6.32 and
converts it to a register program like the one in figure 6.1.

226 6 Continuation-Passing Style

Exercise 6.34 [� �] When we convert a program to CPS, we do more than produce a
program in which the control contexts become explicit. We also choose the exact order
in which the operations are done, and choose names for each intermediate result. The
latter is called sequentialization. If we don’t care about obtaining iterative behavior,
we can sequentialize a program by converting it to A-normal form or ANF. Here’s an
example of a program in ANF.

(define fib/anf
(lambda (n)
(if (< n 2)

1
(let ((val1 (fib/anf (- n 1))))

(let ((val2 (fib/anf (- n 2))))
(+ val1 val2))))))

Whereas a program in CPS sequentializes computation by passing continuations that
name intermediate results, a program in ANF sequentializes computation by using
let expressions that name all of the intermediate results.

Retarget cps-of-exp so that it generates programs in ANF instead of CPS. (For
conditional expressions occurring in nontail position, use the ideas in exercise 6.23.)
Then, show that applying the revised cps-of-exp to, e.g., the definition of fib
yields the definition of fib/anf. Finally, show that given an input program which is
already in ANF, your translator produces the same program except for the names of
bound variables.

Exercise 6.35 [�] Verify on a few examples that if the optimization of exercise 6.27 is
installed, CPS-transforming the output of your ANF transformer (exercise 6.34) on a
program yields the same result as CPS-transforming the program.

6.4 Modeling Computational Effects

Another important use of CPS is to provide a model in which computational
effects can be made explicit. A computational effect is an effect like printing
or assigning to a variable, which is difficult to model using equational rea-
soning of the sort used in chapter 3. By transforming to CPS, we can make
these effects explicit, just as we did with nonlocal control flow in chapter 5.

In using CPS to model effects, our basic principle is that a simple expres-
sion should have no effects. This principle underlies our rule that a simple
expression should have no procedure calls, since a procedure call could fail
to terminate (which is certainly an effect!).

In this section we study three effects: printing, a store (using the explicit-
reference model), and nonstandard control flow.

6.4 Modeling Computational Effects 227

Let us first consider printing. Printing certainly has an effect:

(f print(3) print(4))

and

(f 1 1)

have different effects, even though they return the same answer. The effect
also depends on the order of evaluation of arguments; up to now our lan-
guages have always evaluated their arguments from left to right, but other
languages might not do so.

We can model these considerations by modifying our CPS transformation
in the following ways:

• We add to CPS-IN a print expression

InpExp ::= print (InpExp)
print-exp (exp1)

We have not written an interpreter for CPS-IN, but the interpreter would
have to be extended so that a print-exp prints the value of its argument
and returns some value (which we arbitrarily choose to be 38).

• We add to CPS-OUT a printk expression

TfExp ::= printk (SimpleExp) ; TfExp
cps-printk-exp (simple-exp1 body)

The expression printk(simp);exp has an effect: it prints. Therefore it
must be a TfExp, not a SimpleExp, and can appear only in tail position. The
value of exp becomes the value of the entire printk expression, so exp
is itself in tail position and can be a tfexp. Thus we might write bits of
code like

proc (v1)
printk(-(v1,1));
(f v1 K)

To implement this, we add to the interpreter for CPS-OUT the line

228 6 Continuation-Passing Style

(printk-exp (simple body)
(begin

(eopl:printf "~s~%"
(value-of-simple-exp simple env))

(value-of/k body env cont)))

• We add to cps-of-exp a line that translates from a print expression to
a printk expression. We have arbitrarily decided to have print expres-
sion return the value 38. So our translation should be

(cps-of-exp <<print(simp1)>> K) = printk(simp1); (K 38))

and we use cps-of-exps to take care of the possibility that the argument
to print is nonsimple. This gets us to a new line in cps-of-exp that
says:

(print-exp (rator)
(cps-of-exps (list rator)
(lambda (simples)

(cps-printk-exp
(car simples)
(make-send-to-cont k-exp
(cps-const-exp 38))))))

Let us watch this work on a larger example.

(cps-of-exp <<(f print((g x)) print(4))>> K)
= (cps-of-exp <<print((g x))>>

<<proc (v1)
(cps-of-exp <<(f v1 print(4))>> K)>>)

= (cps-of-exp <<(g x)>>
<<proc (v2)

(cps-of-exp <<(print v2)>>
<<proc (v1)

(cps-of-exp <<(f v1 print(4))>> K)>>)>>)
= (g x

proc (v2)
(cps-of-exp <<(print v2)>>

<<proc (v1)
(cps-of-exp <<(f v1 print(4))>> K)))

= (g x
proc (v2)
printk(v2);
let v1 = 38
in (cps-of-exp <<(f v1 print(4)>> K)))

6.4 Modeling Computational Effects 229

= (g x
proc (v2)
printk(v2);
let v1 = 38
in (cps-of-exp <<print(4)>>

<<proc (v3)
(cps-of-exp <<(f v1 v3)>> K)>>))

= (g x
proc (v2)
printk(v2);
let v1 = 38
in printk(4);

let v3 = 38
in (cps-of-exp <<(f v1 v3)>> K))

= (g x
proc (v2)
printk(v2);
let v1 = 38
in printk(4);

let v3 = 38
in (f v1 v3 K))

Here, we call g in a continuation that names the result v2. The contin-
uation prints the value of v2 and sends 38 to the next continuation, which
binds v1 to its argument 38, prints 4 and then calls the next continuation,
which binds v3 to its argument (also 38) and then calls f with v1, v3, and K.
In this way the sequencing of the different printing actions becomes explicit.

To model explicit references (section 4.2), we go through the same steps:
we add new syntax to CPS-IN and CPS-OUT, write new interpreter lines to
interpret the new syntax in CPS-OUT, and add new lines to cps-of-exp to
translate the new syntax from CPS-IN to CPS-OUT. For explicit references,
we will need to add syntax for reference creation, dereference, and assign-
ment.

• We add to CPS-IN the syntax

InpExp ::= newref (InpExp)
newref-exp (exp1)

InpExp ::= deref (InpExp)
deref-exp (exp1)

InpExp ::= setref (InpExp , InpExp)
setref-exp (exp1 exp2)

230 6 Continuation-Passing Style

• We add to CPS-OUT the syntax

TfExp ::= newrefk (simple-exp , simple-exp)
cps-newrefk-exp (simple1 simple2)

TfExp ::= derefk (simple-exp , simple-exp)
cps-derefk-exp (simple1 simple2)

TfExp ::= setrefk (simple-exp , simple-exp) ; TfExp
cps-setrefk-exp (simple1 simple2 body)

A newrefk expression takes two arguments: the value to be placed in
the newly allocated cell, and a continuation to receive a reference to the
new location. derefk behaves similarly. Since setref is normally exe-
cuted for effect only, the design of setrefk follows that of printk. It
assigns the value of the second argument to the value of the first argu-
ment, which should be a reference, and then executes the third argument
tail-recursively.

In this language we would write

newrefk(33, proc (loc1)
newrefk(44, proc (loc2)

setrefk(loc1,22);
derefk(loc1, proc (val)

-(val,1))))

This program allocates a new location containing 33, and binds loc1 to
that location. It then allocates a new location containing 44, and binds
loc2 to that location. It then sets the contents of location loc1 to 22.
Finally, it dereferences loc1, binds the result (which should be 22) to val,
and returns the value of -(val,1), yielding 21.

To get this behavior, we add these lines to the interpreter for CPS-OUT.

(cps-newrefk-exp (simple1 simple2)
(let ((val1 (value-of-simple-exp simple1 env))

(val2 (value-of-simple-exp simple2 env)))
(let ((newval (ref-val (newref val1))))
(apply-procedure

(expval->proc val2)
(list newval)
k-exp))))

6.4 Modeling Computational Effects 231

(cps-derefk-exp (simple1 simple2)
(apply-procedure

(expval->proc (value-of-simple-exp simple2 env))
(list
(deref

(expval->ref
(value-of-simple-exp simple1 env))))

k-exp))

(cps-setrefk-exp (simple1 simple2 body)
(let ((ref (expval->ref

(value-of-simple-exp simple1 env)))
(val (value-of-simple-exp simple2 env)))

(begin
(setref! ref val)
(value-of/k body env k-exp))))

• Finally, we add these lines to cps-of-exp to implement the translation.

(newref-exp (exp1)
(cps-of-exps (list exp1)

(lambda (simples)
(cps-newrefk-exp (car simples) k-exp))))

(deref-exp (exp1)
(cps-of-exps (list exp1)

(lambda (simples)
(cps-derefk-exp (car simples) k-exp))))

(setref-exp (exp1 exp2)
(cps-of-exps (list exp1 exp2)

(lambda (simples)
(cps-setrefk-exp

(car simples)
(cadr simples)
(make-send-to-cont k-exp

(cps-const-exp 23))))))

In the last line, we make it appear that a setref returns the value of 23,
just like in EXPLICIT-REFS.

Exercise 6.36 [� �] Add a begin expression (exercise 4.4) to CPS-IN. You should not
need to add anything to CPS-OUT.

Exercise 6.37 [� � �] Add implicit references (section 4.3) to CPS-IN. Use the same
version of CPS-OUT, with explicit references, and make sure your translator inserts
allocation and dereference where necessary. As a hint, recall that in the presence of
implicit references, a var-exp is no longer simple, since it reads from the store.

232 6 Continuation-Passing Style

Exercise 6.38 [� � �] If a variable never appears on the left-hand side of a set expres-
sion, then it is immutable, and could be treated as simple. Extend your solution to
the preceding exercise so that all such variables are treated as simple.

Finally, we come to nonlocal control flow. Let’s consider letcc from exer-
cise 5.42. A letcc expression letcc var in body binds the current con-
tinuation to the variable var. This binding is in scope in body. The only
operation on continuations is throw. We use the syntax throw Expression
to Expression, which evaluates the two subexpressions. The second expres-
sion should return a continuation, which is applied to the value of the first
expression. The current continuation of the throw expression is ignored.

We first analyze these expressions according to the paradigm of this chap-
ter. These expressions are never simple. The body part of a letcc is a tail
position, since its value is the value of the entire expression. Since both posi-
tions in a throw are evaluated, and neither is the value of the throw (indeed,
the throw has no value, since it never returns to its immediate continuation),
they are both operand positions.

We can now sketch the rules for converting these two expressions.

(cps-of-exp <<letcc var in body>> K)
= let var = K

in (cps-of-exp body var)

(cps-of-exp <<throw simp1 to simp2>> K)
= (simp2 simp1)

We will use cps-of-exps, as usual, to deal with the possibility that the
arguments to throw are nonsimple. Here K is ignored, as desired.

For this example we do not have to add any syntax to CPS-OUT, since we
are just manipulating control structure.

Exercise 6.39 [�] Implement letcc and throw in the CPS translator.

Exercise 6.40 [� �] Implement try/catch and throw from section 5.4 by adding
them to the CPS translator. You should not need to add anything to CPS-OUT.
Instead, modify cps-of-exp to take two continuations: a success continuation and
an error continuation.

7 Types

We’ve seen how we can use interpreters to model the run-time behavior of
programs. Now we’d like to use the same technology to analyze or predict the
behavior of programs without running them.

We’ve already seen some of this: our lexical-address translator predicts at
analysis time where in the environment each variable will be found at run
time. Further, the actual translator looked like an interpreter, except that
instead of passing around an environment, we passed around a static envi-
ronment.

Our goal is to analyze a program to predict whether evaluation of a pro-
gram is safe, that is, whether the evaluation will proceed without certain
kinds of errors. Exactly what is meant by safety, however, may vary from
language to language. If we can guarantee that evaluation is safe, we will be
sure that the program satisfies its contract.

In this chapter, we will consider languages that are similar to LETREC in
chapter 3. For these languages we say that an evaluation is safe if and only if:

1. For every evaluation of a variable var, the variable is bound.

2. For every evaluation of a difference expression (diff-exp exp1 exp2),
the values of exp1 and exp2 are both num-vals.

3. For every evaluation of an expression of the form (zero?-exp exp1),
the value of exp1 is a num-val.

4. For every evaluation of a conditional expression (if-exp exp1 exp2

exp3), the value of exp1 is a bool-val.

5. For every evaluation of a procedure call (call-exp rator rand), the val-
ue of rator is a proc-val.

234 7 Types

These conditions assert that each operator is performed only on operands
of the correct type. We therefore call violations of these conditions type errors.

A safe evaluation may still fail for other reasons: division by zero, tak-
ing the car of an empty list, etc. We do not include these as part of our
definition of safety because predicting safety for these conditions is much
harder than guaranteeing the conditions listed above. Similarly, a safe evalu-
ation may run infinitely. We do not include nontermination as part of safety
because checking for termination is also very difficult (indeed, it is unde-
cidable in general). Some languages have type systems that guarantee con-
ditions stronger than the ones above, but those are more complex than the
ones we consider here.

Our goal is to write a procedure that looks at the program text and either
accepts or rejects it. Furthermore, we would like our analysis procedure to
be conservative: if the analysis accepts the program, then we can be sure
evaluation of the program will be safe. If the analysis cannot be sure that
evaluation will be safe, it must reject the program. In this case, we say that
the analysis is sound.

An analysis that rejected every program would still be sound, so we also
want our analysis to accept a large set of programs. The analyses in this
chapter will accept enough programs to be useful.

Here are some examples of programs that should be rejected or accepted
by our analysis:

if 3 then 88 else 99 reject: non-boolean test
proc (x) (3 x) reject: non-proc-val rator
proc (x) (x 3) accept
proc (f) proc (x) (f x) accept
let x = 4 in (x 3) reject: non-proc-val rator

(proc (x) (x 3) reject: same as preceding example
4)

let x = zero?(0) reject: non-integer argument to a diff-exp
in -(3, x)

(proc (x) -(3,x) reject: same as preceding example
zero?(0))

let f = 3
in proc (x) (f x) reject: non-proc-val rator

(proc (f) proc (x) (f x) reject: same as preceding example
3)

letrec f(x) = (f -(x,-1)) accept nonterminating but safe
in (f 1)

7.1 Values and Their Types 235

Although the evaluation of the last example does not terminate, the eval-
uation is safe by the definition given above, so our analysis is permitted to
accept it. As it turns out, our analysis will accept it, because the analysis is
not fine enough to determine that this program does not halt.

7.1 Values and Their Types

Since the safety conditions talk only about num-val, bool-val, and
proc-val, one might think that it would be enough to keep track of these
three types. But that is not enough: if all we know is that f is bound to
a proc-val, then we can not draw any conclusions whatsoever about the
value of (f 1). From this argument, we learn that we need to keep track of
finer information about procedures. This finer information is called the type
structure of the language.

Our languages will have a very simple type structure. For the moment,
consider the expressed values of LETREC. These values include only one-
argument procedures, but dealing with multiargument procedures, as in
exercise 3.33, is straightforward: it requires some additional work but does
not require any new ideas.

Grammar for Types

Type ::= int

int-type ()

Type ::= bool
bool-type ()

Type ::= (Type -> Type)
proc-type (arg-type result-type)

To see how this type system works, let’s look at some examples.

236 7 Types

Examples of values and their types

The value of 3 has type int.

The value of -(33,22) has type int.

The value of zero?(11) has type bool.

The value of proc (x) -(x,11) has type (int -> int) since, when
given an integer, it returns an integer.

The value of proc (x) let y = -(x,11) in -(x,y)
has type (int -> int), since when given an integer, it returns an integer.

The value of proc (x) if x then 11 else 22
has type (bool -> int), since when given a boolean, it returns an integer.

The value of proc (x) if x then 11 else zero?(11) has no type in
our type system, since when given a boolean it might return either an integer
or a boolean, and we have no type that describes this behavior.

The value of proc (x) proc (y) if y then x else 11
has type (int -> (bool -> int)), since when given a boolean, it
returns a procedure from booleans to integers.

The value of proc (f) if (f 3) then 11 else 22
has type ((int -> bool) -> int), since when given a procedure from
integers to booleans, it returns an integer.

The value of proc (f) (f 3) has type ((int -> t) -> t) for any type
t, since when given a procedure of type (int -> t), it returns a value of
type t.

The value of proc (f) proc (x) (f (f x)) has type ((t -> t) ->
(t -> t)) for any type t, since when given a procedure of type (t -> t), it
returns another procedure that, when given an argument of type t, returns a
value of type t.

7.1 Values and Their Types 237

We can explain these examples by the following definition.

Definition 7.1.1 The property of an expressed value v being of type t is defined by
induction on t:

• An expressed value is of type int if and only if it is a num-val.

• It is of type bool if and only if it is a bool-val.

• It is of type (t1→t2) if and only if it is a proc-val with the property that if
it is given an argument of type t1, then one of the following things happens:

1. it returns a value of type t2

2. it fails to terminate

3. it fails with an error other than a type error.

We occasionally say “v has type t” instead of “v is of type t.”
This is a definition by induction on t. It depends, however, on the set of

type errors being defined independently, as we did above.
In this system, a value v can be of more than one type. For example,

the value of proc (x) x is of type (t → t) for any type t. Some val-
ues may have no type, like the value of proc (x) if x then 11 else
zero?(11).

Exercise 7.1 [�] Below is a list of closed expressions. Consider the value of each
expression. For each value, what type or types does it have? Some of the values
may have no type that is describable in our type language.

1. proc (x) -(x,3)

2. proc (f) proc (x) -((f x), 1)

3. proc (x) x

4. proc (x) proc (y) (x y).

5. proc (x) (x 3)

6. proc (x) (x x)

7. proc (x) if x then 88 else 99

8. proc (x) proc (y) if x then y else 99

9. (proc (p) if p then 88 else 99
33)

10. (proc (p) if p then 88 else 99
proc (z) z)

11. proc (f)
proc (g)
proc (p)
proc (x) if (p (f x)) then (g 1) else -((f x),1)

238 7 Types

12. proc (x)
proc(p)
proc (f)
if (p x) then -(x,1) else (f p)

13. proc (f)
let d = proc (x)

proc (z) ((f (x x)) z)
in proc (n) ((f (d d)) n)

Exercise 7.2 [� �] Are there any expressed values that have exactly two types accord-
ing to definition 7.1.1?

Exercise 7.3 [� �] For the language LETREC, is it decidable whether an expressed
value val is of type t?

7.2 Assigning a Type to an Expression

So far, we’ve dealt only with the types of expressed values. In order to ana-
lyze programs, we need to write a procedure that takes an expression and
predicts the type of its value.

More precisely, our goal is to write a procedure type-of which, given
an expression (call it exp) and a type environment (call it tenv) mapping each
variable to a type, assigns to exp a type t with the property that

Specification of type-of

Whenever exp is evaluated in an environment in which each variable has a
value of the type specified for it by tenv, one of the following happens:

• the resulting value has type t,

• the evaluation does not terminate, or

• the evaluation fails on an error other than a type error.

If we can assign an expression to a type, we say that the expression is
well-typed; otherwise we say it is ill-typed or has no type.

Our analysis will be based on the principle that if we can predict the types
of the values of each of the subexpressions in an expression, we can predict
the type of the value of the expression.

7.2 Assigning a Type to an Expression 239

We’ll use this idea to write down a set of rules that type-of should follow.
Assume that tenv is a type environment mapping each variable to its type.
Then we should have:

Simple typing rules

(type-of (const-exp num) tenv) = int

(type-of (var-exp var) tenv) = tenv(var)

(type-of exp1 tenv) = int

(type-of (zero?-exp exp1) tenv) = bool

(type-of exp1 tenv) = int (type-of exp2 tenv) = int

(type-of (diff-exp exp1 exp2) tenv) = int

(type-of exp1 tenv) = t1 (type-of body [var=t1]tenv) = t2

(type-of (let-exp var exp1 body) tenv) = t2

(type-of exp1 tenv) = bool
(type-of exp2 tenv) = t
(type-of exp3 tenv) = t

(type-of (if-exp exp1 exp2 exp3) tenv) = t

(type-of rator tenv) = (t1 → t2) (type-of rand tenv) = t1

(type-of (call-exp rator rand) tenv) = t2

If we evaluate an expression exp of type t in a suitable environment, we
know not only that its value is of type t, but we also know something about
the history of that value. Because the evaluation of exp is guaranteed to be
safe, we know that the value of exp was constructed only by operators that
are legal for type t. This point of view will be helpful when we consider data
abstraction in more detail in chapter 8.

240 7 Types

What about procedures? If proc(var)body has type (t1 → t2), then it is
intended to be called on an argument of type t1. When body is evaluated, the
variable var will be bound to a value of type t1.

This suggests the following rule:

(type-of body [var=t1]tenv) = t2

(type-of (proc-exp var body) tenv) = (t1 → t2)

This rule is sound: if type-of makes correct predictions about body, then
it makes correct predictions about (proc-exp var body).

There’s only one problem: if we are trying to compute the type of a proc
expression, how are we going to find the type t1 for the bound variable? It is
nowhere to be found.

There are two standard designs for rectifying this situation:

• Type Checking: In this approach the programmer is required to supply the
missing information about the types of bound variables, and the type-
checker deduces the types of the other expressions and checks them for
consistency.

• Type Inference: In this approach the type-checker attempts to infer the types
of the bound variables based on how the variables are used in the pro-
gram. If the language is carefully designed, the type-checker can infer
most or all of these types.

We will study each of these in turn.

Exercise 7.4 [�] Using the rules of this section, write derivations, like the one on
page 5, that assign types for proc (x) x and proc (x) proc (y) (x y). Use
the rules to assign at least two types for each of these terms. Do the values of these
expressions have the same types?

7.3 CHECKED: A Type-Checked Language

Our new language will be the same as LETREC, except that we require the
programmer to include the types of all bound variables. For letrec-bound
variables, we also require the programmer to specify the result type of the
procedure as well.

7.3 CHECKED: A Type-Checked Language 241

Here are some example programs in CHECKED.

proc (x : int) -(x,1)

letrec
int double (x : int) = if zero?(x)

then 0
else -((double -(x,1)), -2)

in double

proc (f : (bool -> int)) proc (n : int) (f zero?(n))

The result type of double is int, but the type of double itself is (int
-> int), since it is a procedure that takes an integer and returns an integer.

To define the syntax of this language, we change the productions for proc
and letrec expressions.

Changed productions for CHECKED

Expression ::= proc (Identifier : Type) Expression
proc-exp (var ty body)

Expression ::= letrec

Type Identifier (Identifier : Type) = Expression
in Expression

letrec-exp

(p-result-type p-name b-var b-var-type

p-body

letrec-body)

For a proc expression with the type of its bound variable specified, the
rule becomes

(type-of body [var=tvar]tenv) = tres

(type-of (proc-exp var tvar body) tenv) = (tvar → tres)

What about letrec? A typical letrec looks like

letrec
tres p (var : tvar) = eproc-body

in eletrec-body

242 7 Types

This expression declares a procedure named p, with formal parameter var
of type tvar and body eproc-body. Hence the type of p should be tvar → tres.

Each of the expressions in the letrec, eproc-body and eletrec-body, must be
checked in a type environment where each variable is given its correct type.
We can use our scoping rules to determine what variables are in scope, and
hence what types should be associated with them.

In eletrec-body, the procedure name p is in scope. As suggested above, p is
declared to have type tvar → tres. Hence eletrec-body should be checked in the
type environment

tenvletrec-body = [p = (tvar → tres)]tenv

What about eproc-body? In eproc-body, the variable p is in scope, with type
tvar → tres, and the variable var is in scope, with type tvar . Hence the type
environment for eproc-body should be

tenvproc-body = [var = tvar]tenvletrec-body

Furthermore, in this type environment, eproc-body should have result type
tres.

Writing this down as a rule, we get:

(type-of eproc-body [var=tvar][p =(tvar → tres)]tenv) = tres

(type-of eletrec-body [p =(tvar → tres)]tenv) = t

(type-of letrec tres p (var : tvar) = eproc-body in eletrec-body tenv) = t

Now we have written down all the rules, so we are ready to implement a
type checker for this language.

7.3.1 The Checker

We will need to compare types for equality. We do this with the proce-
dure check-equal-type!, which compares two types and reports an error
unless they are equal. check-equal-type! takes a third argument, which
is the expression that we will blame if the types are unequal.

check-equal-type! : Type × Type × Exp → Unspecified
(define check-equal-type!

(lambda (ty1 ty2 exp)
(if (not (equal? ty1 ty2))

(report-unequal-types ty1 ty2 exp))))

7.3 CHECKED: A Type-Checked Language 243

report-unequal-types : Type × Type × Exp → Unspecified
(define report-unequal-types

(lambda (ty1 ty2 exp)
(eopl:error ’check-equal-type!
"Types didn’t match: ~s != ~a in~%~a"
(type-to-external-form ty1)
(type-to-external-form ty2)
exp)))

We never use the value of a call to check-equal-type!; thus a call to
check-equal-type! is executed for effect only, like the setref expres-
sions in section 4.2.2.

The procedure report-unequal-types uses type-to-external-
form, which converts a type back into a list that is easy to read.

type-to-external-form : Type → List
(define type-to-external-form

(lambda (ty)
(cases type ty
(int-type () ’int)
(bool-type () ’bool)
(proc-type (arg-type result-type)

(list
(type-to-external-form arg-type)
’->
(type-to-external-form result-type))))))

Now we can transcribe the rules into a program, just as we did for inter-
preters in chapter 3. The result is shown in figures 7.1–7.3.

Exercise 7.5 [� �] Extend the checker to handle multiple let declarations, multiargu-
ment procedures, and multiple letrec declarations. You will need to add types of
the form (t1 * t2 * ... * tn -> t) to handle multiargument procedures.

Exercise 7.6 [�] Extend the checker to handle assignments (section 4.3).

Exercise 7.7 [�] Change the code for checking an if-exp so that if the test expression
is not a boolean, the other expressions are not checked. Give an expression for which
the new version of the checker behaves differently from the old version.

Exercise 7.8 [� �] Add pairof types to the language. Say that a value is of type
pairof t1 * t2 if and only if it is a pair consisting of a value of type t1 and a value
of type t2. Add to the language the following productions:

244 7 Types

Tenv = Var → Type

type-of-program : Program → Type
(define type-of-program

(lambda (pgm)
(cases program pgm

(a-program (exp1) (type-of exp1 (init-tenv))))))
type-of : Exp × Tenv → Type
(define type-of

(lambda (exp tenv)
(cases expression exp

(type-of num tenv) = int

(const-exp (num) (int-type))

(type-of var tenv) = tenv(var)
(var-exp (var) (apply-tenv tenv var))

(type-of e1 tenv) = int (type-of e2 tenv) = int

(type-of (diff-exp e1 e2) tenv) = int

(diff-exp (exp1 exp2)
(let ((ty1 (type-of exp1 tenv))

(ty2 (type-of exp2 tenv)))
(check-equal-type! ty1 (int-type) exp1)
(check-equal-type! ty2 (int-type) exp2)
(int-type)))

(type-of e1 tenv) = int

(type-of (zero?-exp e1) tenv) = bool

(zero?-exp (exp1)
(let ((ty1 (type-of exp1 tenv)))
(check-equal-type! ty1 (int-type) exp1)
(bool-type)))

(type-of e1 tenv) = bool
(type-of e2 tenv) = t
(type-of e3 tenv) = t

(type-of (if-exp e1 e2 e3) tenv) = t

(if-exp (exp1 exp2 exp3)
(let ((ty1 (type-of exp1 tenv))

(ty2 (type-of exp2 tenv))
(ty3 (type-of exp3 tenv)))

(check-equal-type! ty1 (bool-type) exp1)
(check-equal-type! ty2 ty3 exp)
ty2))

Figure 7.1 type-of for CHECKED

7.3 CHECKED: A Type-Checked Language 245

(type-of e1 tenv) = t1 (type-of body [var=t1]tenv) = t2

(type-of (let-exp var e1 body) tenv) = t2

(let-exp (var exp1 body)
(let ((exp1-type (type-of exp1 tenv)))

(type-of body
(extend-tenv var exp1-type tenv))))

(type-of body [var=tvar]tenv) = tres

(type-of (proc-exp var tvar body) tenv) = (tvar → tres)

(proc-exp (var var-type body)
(let ((result-type

(type-of body
(extend-tenv var var-type tenv))))

(proc-type var-type result-type)))

(type-of rator tenv) = (t1 → t2) (type-of rand tenv) = t1

(type-of (call-exp rator rand) tenv) = t2

(call-exp (rator rand)
(let ((rator-type (type-of rator tenv))

(rand-type (type-of rand tenv)))
(cases type rator-type
(proc-type (arg-type result-type)

(begin
(check-equal-type! arg-type rand-type rand)
result-type))

(else
(report-rator-not-a-proc-type

rator-type rator)))))

Figure 7.2 type-of for CHECKED, cont’d.

Type ::= pairof Type * Type
pair-type (ty1 ty2)

Expression ::= newpair (Expression , Expression)
pair-exp (exp1 exp2)

Expression ::= unpair Identifier Identifier = Expression
in Expression
unpair-exp (var1 var2 exp body)

246 7 Types

(type-of eproc-body [var=tvar][p =(tvar → tres)]tenv) = tres

(type-of eletrec-body [p =(tvar → tres)]tenv) = t

(type-of letrec tres p (var : tvar) = eproc-body in eletrec-body tenv) = t

(letrec-exp (p-result-type p-name b-var b-var-type
p-body letrec-body)

(let ((tenv-for-letrec-body
(extend-tenv p-name

(proc-type b-var-type p-result-type)
tenv)))

(let ((p-body-type
(type-of p-body

(extend-tenv b-var b-var-type
tenv-for-letrec-body))))

(check-equal-type!
p-body-type p-result-type p-body)

(type-of letrec-body tenv-for-letrec-body)))))))

Figure 7.3 type-of for CHECKED, cont’d.

A pair expression creates a pair; an unpair expression (like exercise 3.18) binds its
two variables to the two parts of the expression; the scope of these variables is body.
The typing rules for pair and unpair are:

(type-of e1 tenv) = t1

(type-of e2 tenv) = t2

(type-of (pair-exp e1 e2) tenv) = pairof t1 * t2

(type-of epair tenv) = (pairof t1 t2)

(type-of ebody [var1=t1][var2=t2]tenv) = tbody

(type-of (unpair-exp var1 var2 e1 ebody) tenv) = tbody

Extend CHECKED to implement these rules. In type-to-external-form, pro-
duce the list (pairof t1 t2) for a pair type.

7.3 CHECKED: A Type-Checked Language 247

Exercise 7.9 [� �] Add listof types to the language, with operations similar to those
of exercise 3.9. A value is of type listof t if and only if it is a list and all of its
elements are of type t. Extend the language with the productions

Type ::= listof Type
list-type (ty)

Expression ::= list (Expression {, Expression}∗)

list-exp (exp1 exps)

Expression ::= cons (Expression , Expression)
cons-exp (exp1 exp2)

Expression ::= null? (Expression)
null-exp (exp1)

Expression ::= emptylist_Type
emptylist-exp (ty)

with types given by the following four rules:

(type-of e1 tenv) = t
(type-of e2 tenv) = t

...
(type-of en tenv) = t

(type-of (list-exp e1 (e2 ... en)) tenv) = listof t

(type-of e1 tenv) = t
(type-of e2 tenv) = listof t

(type-of cons(e1,e2) tenv) = listof t

(type-of e1 tenv) = listof t

(type-of null?(e1) tenv) = bool

(type-of emptylist[t] tenv) = listof t

Although cons is similar to pair, it has a very different typing rule.

Write similar rules for car and cdr, and extend the checker to handle these as well
as the other expressions. Use a trick similar to the one in exercise 7.8 to avoid conflict
with proc-type-exp. These rules should guarantee that car and cdr are applied
to lists, but they should not guarantee that the lists be non-empty. Why would it be
unreasonable for the rules to guarantee that the lists be non-empty? Why is the type
parameter in emptylist necessary?

248 7 Types

Exercise 7.10 [� �] Extend the checker to handle EXPLICIT-REFS. You will need to do
the following:

• Add to the type system the types refto t, where t is any type. This is the type of
references to locations containing a value of type t. Thus, if e is of type t, (newref
e) is of type refto t.

• Add to the type system the type void. This is the type of the value returned by
setref. You can’t apply any operation to a value of type void, so it doesn’t
matter what value setref returns. This is an example of types serving as an
information-hiding mechanism.

• Write down typing rules for newref, deref, and setref.

• Implement these rules in the checker.

Exercise 7.11 [� �] Extend the checker to handle MUTABLE-PAIRS.

7.4 INFERRED: A Language with Type Inference

Writing down the types in the program may be helpful for design and doc-
umentation, but it can be time-consuming. Another design is to have the
compiler figure out the types of all the variables, based on observing how
they are used, and utilizing any hints the programmer might give. Surpris-
ingly, for a carefully designed language, the compiler can always infer the
types of the variables. This strategy is called type inference. We can do it for
languages like LETREC, and it scales up to reasonably-sized languages.

For our case study in type inference, we start with the language of
CHECKED. We then change the language so that all the type expressions
are optional. In place of a missing type expression, we use the marker ?.
Hence a typical program looks like

letrec
? foo (x : ?) = if zero?(x)

then 1
else -(x, (foo -(x,1)))

in foo

Each question mark (except, of course, for the one at the end of zero?) indi-
cates a place where a type expression must be inferred.

Since the type expressions are optional, we may fill in some of the ?’s with
types, as in

letrec
? even (x : int) = if zero?(x) then 1 else (odd -(x,1))
bool odd (x : ?) = if zero?(x) then 0 else (even -(x,1))

in (odd 13)

7.4 INFERRED: A Language with Type Inference 249

To specify this syntax, we add a new nonterminal, Optional-type, and we
modify the productions for proc and letrec to use optional types instead
of types.

Optional-type ::= ?

no-type ()

Optional-type ::= Type
a-type (ty)

Expression ::= proc (Identifier : Optional-type) Expression
proc-exp (var otype body)

Expression ::= letrec

Optional-type Identifier (Identifier : Optional-type) = Expression
in Expression

letrec-exp

(p-result-otype p-name

b-var b-var-otype p-body

letrec-body)

The omitted types will be treated as unknowns that we need to find. We do
this by traversing the abstract syntax tree and generating equations between
these types, possibly including these unknowns. We then solve the equations
for the unknown types.

To see how this works, we need names for the unknown types. For each
expression e or bound variable var, let te or tvar denote the type of the expres-
sion or bound variable.

For each node in the abstract syntax tree of the expression, the type rules
dictate some equations that must hold between these types. For our PROC
language, the equations would be:

(diff-exp e1 e2) : te1 = int

te2 = int

t(diff-exp e1 e2) = int

(zero?-exp e1) : te1 = int

t(zero?-exp e1) = bool

(if-exp e1 e2 e3) : te1 = bool

te2 = t(if-exp e1 e2 e3)

te3 = t(if-exp e1 e2 e3)

250 7 Types

(proc-exp var body) : t(proc-exp var body) = (tvar → tbody)

(call-exp rator rand) : trator = (trand → t(call-exp rator rand))

• The first rule says that the arguments and the result of a diff-exp must
all be of type int.

• The second rule says that the argument of a zero?-exp must be an int,
and its result is a bool.

• The third rule says that in an if expression, the test must be of type bool,
and that the types of the two alternatives must be the same as the type of
the entire if expression.

• The fourth rule says that the type of a proc expression is that of a proce-
dure whose argument type is given by the type of its bound variable, and
whose result type is given by the type of its body.

• The fifth rule says that in a procedure call, the operator must have the
type of a procedure that accepts arguments of the same type as that of the
operand, and that produces results of the same type as that of the calling
expression.

To infer the type of an expression, we’ll introduce a type variable for
every subexpression and every bound variable, generate the constraints for
each subexpression, and then solve the resulting equations. To see how this
works, we will infer the types of several sample expressions.

Let us start with the expression proc (f) proc(x) -((f 3),(f x)).
We begin by making a table of all the bound variables, proc expressions,
if expressions, and procedure calls in this expression, and assigning a type
variable to each one.

Expression Type Variable
f t f

x tx

proc(f)proc(x)-((f 3),(f x)) t0

proc(x)-((f 3),(f x)) t1

-((f 3),(f x)) t2

(f 3) t3

(f x) t4

7.4 INFERRED: A Language with Type Inference 251

Now, for each compound expression, we can write down a type equation
according to the rules above.

Expression Equations
proc(f)proc(x)-((f 3),(f x)) 1. t0 = t f → t1

proc(x)-((f 3),(f x)) 2. t1 = tx → t2

-((f 3),(f x)) 3. t3 = int
4. t4 = int
5. t2 = int

(f 3) 6. t f = int → t3

(f x) 7. t f = tx → t4

• Equation 1 says that the entire expression produces a procedure that takes
an argument of type t f and produces a value of the same type as that of
proc(x)-((f 3),(f x)).

• Equation 2 says that proc(x)-((f 3),(f x)) produces a procedure
that takes an argument of type tx and produces a value of the same type
as that of -((f 3),(f x)).

• Equations 3–5 say that the arguments and the result of the subtraction in
-((f 3),(f x)) are all integers.

• Equation 6 says that f expects an argument of type int and returns a
value of the same type as that of (f 3).

• Similarly equation 7 says that f expects an argument of the same type as
that of x and returns a value of the same type as that of (f x).

We can fill in t f , tx, t0, t1, t2, t3, and t4 in any way we like, so long as they
satisfy the equations

t0 = t f → t1

t1 = tx → t2

t3 = int

t4 = int

t2 = int

t f = int → t3

t f = tx → t4

Our goal is to find values for the variables that make all the equations true.
We can express such a solution as a set of equations where the left-hand sides

252 7 Types

are all variables. We call such a set of equations a substitution. The variables
that occur on the left-hand side of some equation in the substitution are said
to be bound in the substitution.

We can solve such equations systematically. This process is called unifica-
tion.

We separate the state of our calculation into the set of equations still to be
solved and the substitution found so far. Initially, all of the equations are to
be solved, and the substitution found is empty.

Equations
t0 = t f → t1

t1 = tx → t2

t3 = int

t4 = int

t2 = int

t f = int → t3

t f = tx → t4

Substitution

We consider each equation in turn. If the equation’s left-hand side is a
variable, we move it to the substitution.

Equations
t1 = tx → t2

t3 = int

t4 = int

t2 = int

t f = int → t3

t f = tx → t4

Substitution
t0 = t f → t1

However, doing this may change the substitution. For example, our next
equation gives a value for t1. We need to propagate that information into the
value for t0, which contains t1 on its right-hand side. So we substitute the
right-hand side for each occurrence of t1 in the substitution. This gets us:

Equations
t3 = int

t4 = int

t2 = int

t f = int → t3

t f = tx → t4

Substitution
t0 = t f → (tx → t2)
t1 = tx → t2

If the right-hand side were a variable, we’d switch the sides and do the
same thing. We can continue in this manner for the next three equations.

7.4 INFERRED: A Language with Type Inference 253

Equations
t4 = int

t2 = int

t f = int → t3

t f = tx → t4

Substitution
t0 = t f → (tx → t2)
t1 = tx → t2

t3 = int

Equations
t2 = int

t f = int → t3

t f = tx → t4

Substitution
t0 = t f → (tx → t2)
t1 = tx → t2

t3 = int

t4 = int

Equations
t f = int → t3

t f = tx → t4

Substitution
t0 = t f → (tx → int)
t1 = tx → int

t3 = int

t4 = int

t2 = int

Now, the next equation to be considered contains t3, which is already
bound to int in the substitution. So we substitute int for t3 in the equation.
We would do the same thing for any other type variables in the equation. We
call this applying the substitution to the equation.

Equations
t f = int → int

t f = tx → t4

Substitution
t0 = t f → (tx → int)
t1 = tx → int

t3 = int

t4 = int

t2 = int

We move the resulting equation into the substitution and update the sub-
stitution as necessary.

Equations
t f = tx → t4

Substitution
t0 = (int → int) → (tx → int)
t1 = tx → int

t3 = int

t4 = int

t2 = int

t f = int → int

254 7 Types

The next equation, t f = tx → t4, contains t f and t4, which are bound in the
substitution, so we apply the substitution to this equation. This gets

Equations
int→ int = tx → int

Substitution
t0 = (int → int) → (tx → int)
t1 = tx → int

t3 = int

t4 = int

t2 = int

t f = int → int

If neither side of the equation is a variable, we can simplify, yielding two
new equations.

Equations
int = tx

int = int

Substitution
t0 = (int → int)→ (tx → int)
t1 = tx → int

t3 = int

t4 = int

t2 = int

t f = int → int

We can process these as usual: we switch the sides of the first equation,
add it to the substitution, and update the substitution, as we did before.

Equations
int = int

Substitution
t0 = (int → int) → (int → int)
t1 = int → int

t3 = int

t4 = int

t2 = int

t f = int → int

tx = int

The final equation, int = int, is always true, so we can discard it.

Equations Substitution
t0 = (int → int) → (int → int)
t1 = int → int

t3 = int

t4 = int

t2 = int

t f = int → int

tx = int

7.4 INFERRED: A Language with Type Inference 255

We have no more equations, so we are done. We conclude from this cal-
culation that our original expression proc (f) proc (x) -((f 3),(f
x)) should be assigned the type

((int → int) → (int → int))

This is reasonable: The first argument f must take an int argument
because it is given 3 as an argument. It must produce an int, because its
value is used as an argument to the subtraction operator. And x must be an
int, because it is also supplied as an argument to f.

Let us consider another example: proc(f)(f 11). Again, we start by
assigning type variables:

Expression Type Variable
f t f

proc(f)(f 11) t0

(f 11) t1

Next we write down the equations

Expression Equations
proc(f)(f 11) t0 = t f → t1

(f 11) t f = int → t1

And next we solve:

Equations
t0 = t f → t1

t f = int → t1

Substitution

Equations
t f = int → t1

Substitution
t0 = t f → t1

Equations Substitution
t0 = (int → t1) → t1

t f = int → t1

This means that we can assign proc (f) (f 11) the type (int→ t1)
→ t1, for any choice of t1. Again, this is reasonable: we can infer that f must
be able to take an int argument, but we have no information about the result
type of f, and indeed for any t1, this code will work for any f that takes an
int argument and returns a value of type t1. We say it is polymorphic in t1.

Let’s try a third example. Consider if x then -(x,1) else 0.
Again, let’s assign type variables to each subexpression that is not a constant.

256 7 Types

Expression Type Variable
x tx

if x then -(x,1) else 0 t0

-(x,1) t1

We then generate the equations

Expression Equations
if x then -(x,1) else 0 tx = bool

t1 = t0

int = t0

-(x,1) tx = int
t1 = int

Processing these equations as we did before, we get

Equations
tx = bool

t1 = t0

int = t0

tx = int

t1 = int

Substitution

Equations
t1 = t0

int = t0

tx = int

t1 = int

Substitution
tx = bool

Equations
int = t0

tx = int

t1 = int

Substitution
tx = bool

t1 = t0

Equations
t0 = int

tx = int

t1 = int

Substitution
tx = bool

t1 = t0

Equations
tx = int

t1 = int

Substitution
tx = bool

t1 = int

t0 = int

7.4 INFERRED: A Language with Type Inference 257

Since tx is already bound in the substitution, we apply the current substi-
tution to the next equation, getting

Equations
bool = int

t1 = int

Substitution
tx = bool

t1 = int

t0 = int

What has happened here? We have inferred from these equations that
bool = int. So in any solution of these equations, bool = int. But bool
and int cannot be equal. Therefore there is no solution to these equations.
Therefore it is impossible to assign a type to this expression. This is reason-
able, since the expression if x then -(x,1) else 0 uses x as both a
boolean and an integer, which is illegal in our type system.

Let us do one more example. Consider proc (f) zero?((f f)). We
proceed as before.

Expression Type Variable
proc (f) zero?((f f)) t0

f t f

zero?((f f)) t1

(f f) t2

Expression Equations
proc (f) zero?((f f)) t0 = t f → t1

zero?((f f)) t1 = bool
t2 = int

(f f) t f = t f → t2

And we solve as usual:

Equations
t0 = t f → t1

t1 = bool

t2 = int

t f = t f → t2

Substitution

Equations
t1 = bool

t2 = int

t f = t f → t2

Substitution
t0 = t f → t1

258 7 Types

Equations
t2 = int

t f = t f → t2

Substitution
t0 = t f → bool

t1 = bool

Equations
t f = t f → t2

Substitution
t0 = t f → bool

t1 = bool

t2 = int

Equations
t f = t f → int

Substitution
t0 = t f → bool

t1 = bool

t2 = int

Now we have a problem. We’ve now inferred that t f = t f → Int. But there
is no type with this property, because the right-hand side of this equation is
always larger than the left: If the syntax tree for t f contains k nodes, then the
right-hand side will always contain k + 2 nodes.

So if we ever deduce an equation of the form tv = t where the type variable
tv occurs in the type t, we must again conclude that there is no solution to
the original equations. This extra condition is called the occurrence check.

This condition also means that the substitutions we build will satisfy the
following invariant:

The no-occurrence invariant

No variable bound in the substitution occurs in any of the right-hand sides
of the substitution.

Our code for solving equations will depend critically on this invariant.

Exercise 7.12 [�] Using the methods in this section, derive types for each of the
expressions in exercise 7.1, or determine that no such type exists. As in the other
examples of this section, assume there is a ? attached to each bound variable.

7.4 INFERRED: A Language with Type Inference 259

Exercise 7.13 [�] Write down a rule for doing type inference for let expressions.
Using your rule, derive types for each of the following expressions, or determine
that no such type exists.

1. let x = 4 in (x 3)

2. let f = proc (z) z in proc (x) -((f x), 1)

3. let p = zero?(1) in if p then 88 else 99

4. let p = proc (z) z in if p then 88 else 99

Exercise 7.14 [�] What is wrong with this expression?

letrec
? even(odd : ?) =

proc (x : ?)
if zero?(x) then 1 else (odd -(x,1))

in letrec
? odd(x : bool) =

if zero?(x) then 0 else ((even odd) -(x,1))
in (odd 13)

Exercise 7.15 [� �] Write down a rule for doing type inference for a letrec expres-
sion. Your rule should handle multiple declarations in a letrec. Using your rule,
derive types for each of the following expressions, or determine that no such type
exists:

1. letrec ? f (x : ?)
= if zero?(x) then 0 else -((f -(x,1)), -2)

in f

2. letrec ? even (x : ?)
= if zero?(x) then 1 else (odd -(x,1))

? odd (x : ?)
= if zero?(x) then 0 else (even -(x,1))

in (odd 13)

3. letrec ? even (odd : ?)
= proc (x) if zero?(x)

then 1
else (odd -(x,1))

in letrec ? odd (x : ?) =
if zero?(x)
then 0
else ((even odd) -(x,1))

in (odd 13)

Exercise 7.16 [� � �] Modify the grammar of INFERRED so that missing types are
simply omitted, rather than marked with ?.

260 7 Types

7.4.1 Substitutions

We will build the implementation in a bottom-up fashion. We first consider
substitutions.

We represent type variables as an additional variant of the type data type.
We do this using the same technique that we used for lexical addresses in
section 3.7. We add to the grammar the production

Type ::= %tvar-type Number
tvar-type (serial-number)

We call these extended types type expressions. A basic operation on
type expressions is substitution of a type for a type variable, defined
by apply-one-subst. (apply-one-subst t0 tv t1) returns the type
obtained by substituting t1 for every occurrence of tv in t0. This is sometimes
written t0[tv = t1].

apply-one-subst : Type × Tvar × Type → Type
(define apply-one-subst

(lambda (ty0 tvar ty1)
(cases type ty0

(int-type () (int-type))
(bool-type () (bool-type))
(proc-type (arg-type result-type)

(proc-type
(apply-one-subst arg-type tvar ty1)
(apply-one-subst result-type tvar ty1)))

(tvar-type (sn)
(if (equal? ty0 tvar) ty1 ty0)))))

This procedure deals with substituting for a single type variable. It doesn’t
deal with full-fledged substitutions like those we had in the preceding sec-
tion.

A substitution is a list of equations between type variables and types.
Equivalently, we can think of this list as a function from type variables to
types. We say a type variable is bound in the substitution if and only if it
occurs on the left-hand side of one of the equations in the substitution.

We represent a substitution as a list of pairs (type variable . type). The
basic observer for substitutions is apply-subst-to-type. This walks
through the type t, replacing each type variable by its binding in the substitu-
tion σ. If a variable is not bound in the substitution, then it is left unchanged.
We write tσ for the resulting type.

7.4 INFERRED: A Language with Type Inference 261

The implementation uses the Scheme procedure assoc to look up the type
variable in the substitution. assoc returns either the matching (type vari-
able, type) pair or #f if the given type variable is not the car of any pair in
the list. We write

apply-subst-to-type : Type × Subst → Type
(define apply-subst-to-type

(lambda (ty subst)
(cases type ty
(int-type () (int-type))
(bool-type () (bool-type))
(proc-type (t1 t2)

(proc-type
(apply-subst-to-type t1 subst)
(apply-subst-to-type t2 subst)))

(tvar-type (sn)
(let ((tmp (assoc ty subst)))

(if tmp
(cdr tmp)
ty))))))

The constructors for substitutions are empty-subst and extend-subst.
(empty-subst) produces a representation of the empty substitution.
(extend-subst σ tv t) takes the substitution σ and adds the equation
tv = t to it, as we did in the preceding section. We write σ[tv = t] for the
resulting substitution. This was a two-step operation: first we substituted t
for tv in each of the right-hand sides of the equations in the substitution, and
then we added the equation tv = t to the list. Pictorially,

⎛
⎜⎜⎜⎝

tv1 = t1
...

tvn = tn

⎞
⎟⎟⎟⎠ [tv = t] =

⎛
⎜⎜⎜⎝

tv = t
tv1 = t1[tv = t]

...
tvn = tn[tv = t]

⎞
⎟⎟⎟⎠

This definition has the property that for any type t,

(tσ)[tv = t′] = t(σ[tv = t′])

The implementation of extend-subst follows the picture above. It sub-
stitutes t0 for tv0 in all of the existing bindings in σ0, and then adds the bind-
ing for t0.

262 7 Types

empty-subst : () → Subst
(define empty-subst (lambda () ’()))

extend-subst : Subst × Tvar × Type → Subst
usage: tvar not already bound in subst.
(define extend-subst

(lambda (subst tvar ty)
(cons

(cons tvar ty)
(map

(lambda (p)
(let ((oldlhs (car p))

(oldrhs (cdr p)))
(cons

oldlhs
(apply-one-subst oldrhs tvar ty))))

subst))))

This implementation preserves the no-occurrence invariant, but it does not
depend on, nor does it attempt to enforce it. That is the job of the unifier, in
the next section.

Exercise 7.17 [� �] In our representation, extend-subst may do a lot of work if σ
is large. Implement an alternate representation in which extend-subst is imple-
mented as

(define extend-subst
(lambda (subst tvar ty)
(cons (cons tvar ty) subst)))

and the extra work is shifted to apply-subst-to-type, so that the property
t(σ[tv = t′]) = (tσ)[tv = t′] is still satisfied. For this definition of extend-subst,
is the no-occurrence invariant needed?

Exercise 7.18 [� �] Modify the implementation in the preceding exercise so that
apply-subst-to-type computes the substitution for any type variable at most
once.

7.4.2 The Unifier

The main procedure of the unifier is unifier. The unifier performs one step
of the inference procedure outlined above: It takes two types, t1 and t2, a sub-
stitution σ that satisfies the no-occurrence invariant, and an expression exp.
It returns the substitution that results from adding t1 = t2 to σ. This will be
the smallest extension of σ that unifies t1σ and t2σ. This substitution will still

7.4 INFERRED: A Language with Type Inference 263

satisfy the no-occurrence invariant. If adding t1 = t2 yields an inconsistency
or violates the no-occurrence invariant, then the unifier reports an error, and
blames the expression exp. This is typically the expression that gave rise to
the equation t1 = t2.

This is an algorithm for which cases gives awkward code, so we use sim-
ple predicates and extractors on types instead. The algorithm is shown in
figure 7.4, and it works as follows:

• First, as we did above, we apply the substitution to each of the types t1

and t2.

• If the resulting types are the same, we return immediately. This corre-
sponds to the step of deleting a trivial equation above.

• If ty1 is an unknown type, then the no-occurrence invariant tells us that
it is not bound in the substitution. Hence it must be unbound, so we
propose to add t1 = t2 to the substitution. But we need to perform the
occurrence check, so that the no-occurrence invariant is preserved. The
call (no-occurrence? tv t) returns #t if and only if there is no occur-
rence of the type variable tv in t (figure 7.5).

• If t2 is an unknown type, we do the same thing, reversing the roles of t1

and t2.

• If neither t1 nor t2 is a type variable, then we can analyze further.

If they are both proc types, then we simplify by equating the argument
types, and then equating the result types in the resulting substitution.

Otherwise, either one of t1 and t2 is int and the other is bool, or one is a
proc type and the other is int or bool. In any of these cases, there is no
solution to the equation, so an error is reported.

Here is another way of thinking about all this that is sometimes useful.
The substitution is a store, and an unknown type is a reference into that store.
unifier produces the new store that is obtained by adding ty1 = ty2 to
the store.

Last, we must implement the occurrence check. This is a straightforward
recursion on the type, and is shown in figure 7.5.

Exercise 7.19 [�] We wrote: “If ty1 is an unknown type, then the no-occurrence
invariant tells us that it is not bound in the substitution.” Explain in detail why this
is so.

264 7 Types

unifier : Type × Type × Subst × Exp → Subst
(define unifier

(lambda (ty1 ty2 subst exp)
(let ((ty1 (apply-subst-to-type ty1 subst))

(ty2 (apply-subst-to-type ty2 subst)))
(cond

((equal? ty1 ty2) subst)
((tvar-type? ty1)
(if (no-occurrence? ty1 ty2)
(extend-subst subst ty1 ty2)
(report-no-occurrence-violation ty1 ty2 exp)))

((tvar-type? ty2)
(if (no-occurrence? ty2 ty1)
(extend-subst subst ty2 ty1)
(report-no-occurrence-violation ty2 ty1 exp)))

((and (proc-type? ty1) (proc-type? ty2))
(let ((subst (unifier

(proc-type->arg-type ty1)
(proc-type->arg-type ty2)
subst exp)))

(let ((subst (unifier
(proc-type->result-type ty1)
(proc-type->result-type ty2)
subst exp)))

subst)))
(else (report-unification-failure ty1 ty2 exp))))))

Figure 7.4 The unifier

Exercise 7.20 [� �] Modify the unifier so that it calls apply-subst-to-type only
on type variables, rather than on its arguments.

Exercise 7.21 [� �] We said the substitution is like a store. Implement the unifier,
using the representation of substitutions from exercise 7.17, and keeping the substi-
tution in a global Scheme variable, as we did in figures 4.1 and 4.2.

Exercise 7.22 [� �] Refine the implementation of the preceding exercise so that the
binding of each type variable can be obtained in constant time.

7.4 INFERRED: A Language with Type Inference 265

no-occurrence? : Tvar × Type → Bool
(define no-occurrence?

(lambda (tvar ty)
(cases type ty
(int-type () #t)
(bool-type () #t)
(proc-type (arg-type result-type)

(and
(no-occurrence? tvar arg-type)
(no-occurrence? tvar result-type)))

(tvar-type (serial-number) (not (equal? tvar ty))))))

Figure 7.5 The occurrence check

7.4.3 Finding the Type of an Expression

We convert optional types to types with unknowns by defining a fresh type
variable for each ?, using otype->type.

optype->type : OptionalType → Type
(define otype->type

(lambda (otype)
(cases optional-type otype
(no-type () (fresh-tvar-type))
(a-type (ty) ty))))

fresh-tvar-type : () → Type
(define fresh-tvar-type

(let ((sn 0))
(lambda ()
(set! sn (+ sn 1))
(tvar-type sn))))

266 7 Types

When we convert to external form, we represent a type variable by a sym-
bol containing its serial number.

type-to-external-form : Type → List
(define type-to-external-form

(lambda (ty)
(cases type ty

(int-type () ’int)
(bool-type () ’bool)
(proc-type (arg-type result-type)

(list
(type-to-external-form arg-type)
’->
(type-to-external-form result-type)))

(tvar-type (serial-number)
(string->symbol
(string-append

"ty"
(number->string serial-number)))))))

Now we can write type-of. It takes an expression, a type environment
mapping program variables to type expressions, and a substitution satisfying
the no-occurrence invariant, and it returns a type and a new no-occurrence
substitution.

The type environment associates a type expression with each program
variable. The substitution explains the meaning of each type variable in the
type expressions. We use the metaphor of a substitution as a store, and a type
variable as reference into that store. Therefore, type-of returns two values:
a type expression, and a substitution in which to interpret the type variables
in that expression. We implement this as we did in exercise 4.12, by defining
a new data type that contains the two values, and using that as the return
value.

The definition of type-of is shown in figures 7.6–7.8. For each kind of
expression, we recur on the subexpressions, passing along the solution so
far in the substitution argument. Then we generate the equations for the
current expression, according to the specification, and record these in the
substitution by calling unifier.

Testing the inferencer is somewhat more subtle than testing our previous
interpreters, because of the possibility of polymorphism. For example, if the
inferencer is given proc (x) x, it might generate any of the external forms
(tvar1 -> tvar1) or (tvar2 -> tvar2) or (tvar3 -> tvar3), and
so on. These may be different every time through the inferencer, so we won’t

7.4 INFERRED: A Language with Type Inference 267

Answer = Type × Subst

(define-datatype answer answer?
(an-answer

(ty type?)
(subst substitution?)))

type-of-program : Program → Type
(define type-of-program

(lambda (pgm)
(cases program pgm
(a-program (exp1)

(cases answer (type-of exp1
(init-tenv) (empty-subst))

(an-answer (ty subst)
(apply-subst-to-type ty subst)))))))

type-of : Exp × Tenv × Subst → Answer
(define type-of

(lambda (exp tenv subst)
(cases expression exp

(const-exp (num) (an-answer (int-type) subst))

(zero?-exp e1) : te1
= int

t(zero?-exp e1) = bool

(zero?-exp (exp1)
(cases answer (type-of exp1 tenv subst)

(an-answer (ty1 subst1)
(let ((subst2

(unifier ty1 (int-type) subst1 exp)))
(an-answer (bool-type) subst2)))))

Figure 7.6 type-of for INFERRED, part 1

268 7 Types

(diff-exp e1 e2) : te1
= int

te2
= int

t(diff-exp e1 e2) = int

(diff-exp (exp1 exp2)
(cases answer (type-of exp1 tenv subst)
(an-answer (ty1 subst1)

(let ((subst1
(unifier ty1 (int-type) subst1 exp1)))

(cases answer (type-of exp2 tenv subst1)
(an-answer (ty2 subst2)

(let ((subst2
(unifier ty2 (int-type)
subst2 exp2)))

(an-answer (int-type) subst2))))))))

(if-exp e1 e2 e3) : te1
= bool

te2
= t(if-exp e1 e2 e3)

te3
= t(if-exp e1 e2 e3)

(if-exp (exp1 exp2 exp3)
(cases answer (type-of exp1 tenv subst)
(an-answer (ty1 subst)

(let ((subst
(unifier ty1 (bool-type) subst exp1)))

(cases answer (type-of exp2 tenv subst)
(an-answer (ty2 subst)

(cases answer (type-of exp3 tenv subst)
(an-answer (ty3 subst)
(let ((subst

(unifier ty2 ty3 subst exp)))
(an-answer ty2 subst))))))))))

(var-exp (var)
(an-answer (apply-tenv tenv var) subst))

(let-exp (var exp1 body)
(cases answer (type-of exp1 tenv subst)
(an-answer (exp1-type subst)

(type-of body
(extend-tenv var exp1-type tenv)
subst))))

Figure 7.7 type-of for INFERRED, part 2

7.4 INFERRED: A Language with Type Inference 269

(proc-exp var body) : t(proc-exp var body) = (tvar → tbody)

(proc-exp (var otype body)
(let ((var-type (otype->type otype)))

(cases answer (type-of body
(extend-tenv var var-type tenv)
subst)

(an-answer (body-type subst)
(an-answer

(proc-type var-type body-type)
subst)))))

(call-exp rator rand) : trator = (trand → t(call-exp rator rand))

(call-exp (rator rand)
(let ((result-type (fresh-tvar-type)))

(cases answer (type-of rator tenv subst)
(an-answer (rator-type subst)

(cases answer (type-of rand tenv subst)
(an-answer (rand-type subst)
(let ((subst

(unifier
rator-type
(proc-type
rand-type result-type)

subst
exp)))

(an-answer result-type subst))))))))

Figure 7.8 type-of for INFERRED, part 3

be able to anticipate them when we write our test items. So when we com-
pare the produced type to the correct type, we’ll fail. We need to accept
all of the alternatives above, but reject (tvar3 -> tvar4) or (int ->
tvar17).

To compare two types in external form, we standardize the names of the
unknown types, by walking through each external form, renumbering all
the type variables so that they are numbered starting with ty1. We can then
compare the renumbered types with equal? (figures 7.10–7.11).

To systematically rename each unknown type, we construct a substitution
with canonical-subst. This is a straightforward recursion, with table

270 7 Types

letrec tproc−result p (var : tvar) = eproc-body in eletrec-body :
tp = tvar → teproc-body
teletrec-body

= tletrec tproc−result p (var : tvar) = eproc-body in eletrec-body

(letrec-exp (p-result-otype p-name b-var b-var-otype
p-body letrec-body)

(let ((p-result-type (otype->type p-result-otype))
(p-var-type (otype->type b-var-otype)))

(let ((tenv-for-letrec-body
(extend-tenv p-name

(proc-type p-var-type p-result-type)
tenv)))

(cases answer (type-of p-body
(extend-tenv b-var p-var-type

tenv-for-letrec-body)
subst)

(an-answer (p-body-type subst)
(let ((subst

(unifier p-body-type p-result-type
subst p-body)))

(type-of letrec-body
tenv-for-letrec-body
subst))))))))))

Figure 7.9 type-of for INFERRED, part 4

playing the role of an accumulator. The length of table tells us how many
distinct unknown types we have found, so we can use its length to give the
number of the “next” ty symbol. This is similar to the way we used length
in figure 4.1.

Exercise 7.23 [� �] Extend the inferencer to handle pair types, as in exercise 7.8.

Exercise 7.24 [� �] Extend the inferencer to handle multiple let declarations, multi-
argument procedures, and multiple letrec declarations.

7.4 INFERRED: A Language with Type Inference 271

TvarTypeSym = a symbol ending with a digit

A-list = Listof(Pair(TvarTypeSym, TvarTypeSym))

equal-up-to-gensyms? : S-exp × S-exp → Bool
(define equal-up-to-gensyms?

(lambda (sexp1 sexp2)
(equal?
(apply-subst-to-sexp (canonical-subst sexp1) sexp1)
(apply-subst-to-sexp (canonical-subst sexp2) sexp2))))

canonical-subst : S-exp → A-list
(define canonical-subst

(lambda (sexp)
loop : S-exp × A-list → A-list
(let loop ((sexp sexp) (table ’()))
(cond

((null? sexp) table)
((tvar-type-sym? sexp)
(cond

((assq sexp table) table)
(else
(cons

(cons sexp (ctr->ty (length table)))
table))))

((pair? sexp)
(loop (cdr sexp)

(loop (car sexp) table)))
(else table)))))

Figure 7.10 equal-up-to-gensyms?, part 1

Exercise 7.25 [� �] Extend the inferencer to handle list types, as in exercise 7.9. Mod-
ify the language to use the production

Expression ::= emptylist

instead of
Expression ::= emptylist_Type

As a hint, consider creating a type variable in place of the missing _t.

272 7 Types

tvar-type-sym? : Sym → Bool
(define tvar-type-sym?

(lambda (sym)
(and (symbol? sym)

(char-numeric? (car (reverse (symbol->list sym)))))))

symbol->list : Sym → List
(define symbol->list

(lambda (x)
(string->list (symbol->string x))))

apply-subst-to-sexp : A-list × S-exp → S-exp
(define apply-subst-to-sexp

(lambda (subst sexp)
(cond

((null? sexp) sexp)
((tvar-type-sym? sexp)
(cdr (assq sexp subst)))

((pair? sexp)
(cons

(apply-subst-to-sexp subst (car sexp))
(apply-subst-to-sexp subst (cdr sexp))))

(else sexp))))

ctr->ty : N → Sym
(define ctr->ty

(lambda (n)
(string->symbol

(string-append "tvar" (number->string n)))))

Figure 7.11 equal-up-to-gensyms?, part 2

Exercise 7.26 [� �] Extend the inferencer to handle EXPLICIT-REFS, as in exer-
cise 7.10.

Exercise 7.27 [� �] Rewrite the inferencer so that it works in two phases. In the first
phase it should generate a set of equations, and in the second phase, it should repeat-
edly call unify to solve them.

7.4 INFERRED: A Language with Type Inference 273

Exercise 7.28 [� �] Our inferencer is very useful, but it is not powerful enough to
allow the programmer to define procedures that are polymorphic, like the polymor-
phic primitives pair or cons, which can be used at many types. For example, our
inferencer would reject the program

let f = proc (x : ?) x
in if (f zero?(0))

then (f 11)
else (f 22)

even though its execution is safe, because f is used both at type (bool→ bool) and
at type (int→ int). Since the inferencer of this section is allowed to find at most
one type for f, it will reject this program.

For a more realistic example, one would like to write programs like

let
? map (f : ?) =

letrec
? foo (x : ?) = if null?(x)

then emptylist
else cons((f car(x)),

((foo f) cdr(x)))
in foo

in letrec
? even (y : ?) = if zero?(y)

then zero?(0)
else if zero?(-(y,1))

then zero?(1)
else (even -(y,2))

in pair(((map proc(x : int)-(x,1))
cons(3,cons(5,emptylist))),
((map even)
cons(3,cons(5,emptylist))))

This expression uses map twice, once producing a list of ints and once producing
a list of bools. Therefore it needs two different types for the two uses. Since the
inferencer of this section will find at most one type for map, it will detect the clash
between int and bool and reject the program.

One way to avoid this problem is to allow polymorphic values to be introduced
only by let, and then to treat (let-exp var e1 e2) differently from (call-exp
(proc-exp var e2) e1) for type-checking purposes.

Add polymorphic bindings to the inferencer by treating (let-exp var e1 e2) like
the expression obtained by substituting e1 for each free occurrence of var in e2. Then,
from the point of view of the inferencer, there are many different copies of e1 in the
body of the let, so they can have different types, and the programs above will be
accepted.

274 7 Types

Exercise 7.29 [� � �] The type inference algorithm suggested in the preceding exercise
will analyze e1 many times, once for each of its occurrences in e2. Implement Milner’s
Algorithm W, which analyzes e1 only once.

Exercise 7.30 [� � �] The interaction between polymorphism and effects is subtle.
Consider a program starting

let p = newref(proc (x : ?) x)
in ...

1. Finish this program to produce a program that passes the polymorphic inferencer,
but whose evaluation is not safe according to the definition at the beginning of the
chapter.

2. Avoid this difficulty by restricting the right-hand side of a let to have no effect
on the store. This is called the value restriction.

8 Modules

The language features we have introduced so far are very powerful for build-
ing systems of a few hundred lines of code. If we are to build larger systems,
with thousands of lines of code, we will need some more ingredients.

1. We will need a good way to separate the system into relatively self-
contained parts, and to document the dependencies between those parts.

2. We will need a better way to control the scope and binding of names.
Lexical scoping is a powerful tool for name control, but it is not sufficient
when programs may be large or split up over multiple sources.

3. We will need a way to enforce abstraction boundaries. In chapter 2, we
introduced the idea of an abstract data type. Inside the implementation of
the type, we can manipulate the values arbitrarily, but outside the imple-
mentation, the values of the type are to be created and manipulated only
by the procedures in the interface of that type. We call this an abstraction
boundary. If a program respects this boundary, we can change the imple-
mentation of the data type. If, however, some piece of code breaks the
abstraction by relying on the details of the implementation, then we can
no longer change the implementation freely without breaking other code.

4. Last, we need a way to combine these parts flexibly, so that a single part
may be reused in different contexts.

In this chapter, we introduce modules as a way of satisfying these needs. In
particular, we show how we can use the type system to create and enforce
abstraction boundaries.

A program in our module language consists of a sequence of module def-
initions followed by an expression to be evaluated. Each module definition
binds a name to a module. A created module is either a simple module, which is
a set of bindings, much like an environment, or a module procedure that takes
a module and produces another module.

276 8 Modules

Each module will have an interface. A module that is a set of bindings
will have a simple interface, which lists the bindings offered by the module,
and their types. A module procedure will have an interface that specifies the
interfaces of the argument and result modules of the procedure, much as a
procedure has a type that specifies the types of its argument and result.

These interfaces, like types, determine the ways in which modules can be
combined. We therefore emphasize the types of our examples, since evalu-
ation of these programs is straightforward. As we have seen before, under-
standing the scoping and binding rules of the language will be the key to
both analyzing and evaluating programs in the language.

8.1 The Simple Module System

Our first language, SIMPLE-MODULES, has only simple modules. It does
not have module procedures, and it creates only very simple abstraction
boundaries. This module system is similar to that used in several popular
languages.

8.1.1 Examples

Imagine a software project involving three developers: Alice, Bob, and Char-
lie. Alice, Bob, and Charlie are developing largely independent pieces of the
project. These developers are geographically dispersed, perhaps in different
time zones. Each piece of the project is to implement an interface, like those
in section 2.1, but the implementation of that interface may involve a large
number of additional procedures. Furthermore, each of the developers needs
to make sure that there are no name conflicts that would interfere with the
other portions of the project when the pieces are integrated.

To accomplish this goal, each of the developers needs to publish an inter-
face, listing the names for each of their procedures that they expect others to
use. It will be the job of the module system to ensure that these names are
public, but any other names they use are private and will not be overridden
by any other piece of code in the project.

We could use the scoping techniques of chapter 3, but these do not scale
to larger projects. Instead, we will use a module system. Each of our devel-
opers will produce a module consisting of a public interface and a private
implementation. Each developer can see the interface and implementation
of his or her own module, but Alice can see only the interfaces of the other
modules. Nothing she can do can interfere with the implementations of the
other modules, nor can their module implementations interfere with hers.
(See figure 8.1.)

8.1 The Simple Module System 277

Charlie’s interface
quux : (int −> int)

Charlie’s module

Charlie’s implementation

baz : (bool −> int)Bob’s module

Bob’s implementation

foo : (int −> int)

Bob’s interface

baz : (bool −> int)

Alice’s module

foo = proc (x : int) ...

bar : (int −> bool)

bar = proc (x : int) ...

Alice’s interface
foo : (int −> int)

foo−helper = ...

Alice’s implementation

Figure 8.1 Alice’s view of the three modules in the project

Here is a short example in SIMPLE-MODULES.

Example 8.1

module m1
interface
[a : int
b : int
c : int]

body
[a = 33
x = -(a,1) % = 32
b = -(a,x) % = 1
c = -(x,b)] % = 31

let a = 10
in -(-(from m1 take a,

from m1 take b),
a)

has type int and value ((33− 1)− 10) = 22.

278 8 Modules

This program begins with the definition of a module named m1. Like all
modules, it has an interface and a body. The body implements the interface.
The interface declares the variables a, b, and c. The body defines bindings for
a, x, b, and c.

When we evaluate the program, the expressions in m1’s body are eval-
uated. The appropriate values are bound to the variables from m1 take
a, from m1 take b, and from m1 take c, which are in scope after the
module definition. from m1 take x is not in scope after the module defi-
nition, since it has not been declared in the interface.

These new variables are called qualified variables to distinguish them from
our previous simple variables. In conventional languages, qualified variables
might be written m1.a or m1:a or m1::a. The notation m1.a is often used
for something different in object-oriented languages, which we study in
chapter 9.

We say that the interface offers (or advertises or promises) three integer val-
ues, and that the body supplies (or provides or exports) these values. A module
body satisfies an interface when it supplies a value of the advertised type for
each of the variables that are named in the interface.

In the body, definitions have let∗ scoping, so that a is in scope in the
definitions of x, b, and c. Some of the scopes are pictured in figure 8.2.

In this example, the expression, starting with let a = 10, is the program
body. Its value will become the value of the program.

Each module establishes an abstraction boundary between the module
body and the rest of the program. The expressions in the module body are
inside the abstraction boundary, and everything else is outside the abstraction
boundary. A module body may supply bindings for names that are not in
the interface, but those bindings are not visible in the program body or in
other modules, as suggested in figure 8.1. In our example, from m1 take
x is not in scope. Had we written -(from m1 take a, from m1 take
x), the resulting program would have been ill-typed.

Example 8.2 The program

module m1
interface
[u : bool]

body
[u = 33]

44

is not well-typed. The body of the module must associate each name in the
interface with a value of the appropriate type, even if those values are not
used elsewhere in the program.

8.1 The Simple Module System 279

Figure 8.2 Some of the scopes for a simple module

Example 8.3 The module body must supply bindings for all the declara-
tions in the interface. For example,

module m1
interface
[u : int
v : int]

body
[u = 33]

44

is not well-typed, because the body of m1 does not provide all of the values
that its interface advertises.

280 8 Modules

Example 8.4 To keep the implementation simple, our language requires
that the module body produce the values in the same order as the interface.
Hence

module m1
interface
[u : int
v : int]

body
[v = 33
u = 44]

from m1 take u

is not well-typed. This can be fixed (exercises 8.8, 8.17).

Example 8.5 In our language, modules have let∗ scoping (exercise 3.17).
For example,

module m1
interface
[u : int]

body
[u = 44]

module m2
interface
[v : int]

body
[v = -(from m1 take u,11)]

-(from m1 take u, from m2 take v)

has type int. But if we reverse the order of the definitions, we get

module m2
interface
[v : int]

body
[v = -(from m1 take u,11)]

module m1
interface
[u : int]

body
[u = 44]

-(from m1 take u, from m2 take v)

which is not well-typed, since from m1 take u is not in scope where it is
used in the body of m2.

8.1 The Simple Module System 281

8.1.2 Implementing the Simple Module System

Syntax

A program in SIMPLE-MODULES consists of a sequence of module defini-
tions, followed by an expression.

program ::= {ModuleDefn}∗ Expression
a-program (m-defs body)

A module definition consists of its name, its interface, and its body.

ModuleDefn ::= module Identifier interface Iface body ModuleBody
a-module-definition (m-name expected-iface m-body)

An interface for a simple module consists of an arbitrary number of dec-
larations. Each declaration declares a program variable and its type. We call
these value declarations, since the variable being declared will denote a value.
In later sections, we introduce other kinds of interfaces and declarations.

Iface ::= [{Decl}∗]

simple-iface (decls)

Decl ::= Identifier : Type
val-decl (var-name ty)

A module body consists of an arbitrary number of definitions. Each defi-
nition associates a variable with the value of an expression.

ModuleBody ::= [{Defn}∗]

defns-module-body (defns)

Defn ::= Identifier = Expression
val-defn (var-name exp)

Our expressions are those of CHECKED (section 7.3), but we modify the
grammar to add a new kind of expression for a reference to a qualified vari-
able.

Expression ::= from Identifier take Identifier
qualified-var-exp (m-name var-name)

282 8 Modules

The Interpreter

Evaluation of a module body will produce a module. In our simple mod-
ule language, a module will be an environment consisting of all the bind-
ings exported by the module. We represent these with the data type
typed-module.

(define-datatype typed-module typed-module?
(simple-module
(bindings environment?)))

We bind module names in the environment, using a new kind of binding:

(define-datatype environment environment?
(empty-env)
(extend-env ...as before...)
(extend-env-rec ...as before...)
(extend-env-with-module
(m-name symbol?)
(m-val typed-module?)
(saved-env environment?)))

For example, if our program is

module m1
interface
[a : int
b : int
c : int]

body
[a = 33
b = 44
c = 55]

module m2
interface
[a : int
b : int]

body
[a = 66
b = 77]

let z = 99
in -(z, -(from m1 take a, from m2 take a))

then the environment after the declaration of z is

8.1 The Simple Module System 283

#(struct:extend-env
z #(struct:num-val 99)

#(struct:extend-env-with-module
m2 #(struct:simple-module

#(struct:extend-env
a #(struct:num-val 66)
#(struct:extend-env

b #(struct:num-val 77)
#(struct:empty-env))))

#(struct:extend-env-with-module
m1 #(struct:simple-module

#(struct:extend-env
a #(struct:num-val 33)
#(struct:extend-env

b #(struct:num-val 44)
#(struct:extend-env

c #(struct:num-val 55)
#(struct:empty-env)))))

#(struct:empty-env))))

In this environment, both m1 and m2 are bound to simple modules, which
contain a small environment.

To evaluate a reference to a qualified variable from m take var, we use
lookup-qualified-var-in-env. This first looks up the module m in the
current environment, and then looks up var in the resulting environment.

lookup-qualified-var-in-env : Sym × Sym × Env → ExpVal
(define lookup-qualified-var-in-env

(lambda (m-name var-name env)
(let ((m-val (lookup-module-name-in-env m-name env)))
(cases typed-module m-val

(simple-module (bindings)
(apply-env bindings var-name))))))

To evaluate a program, we evaluate its body in an initial environment built
by adding all the module definitions to the environment. The procedure
add-module-defns-to-env loops through the module definitions. For
each module definition, the body is evaluated, and the resulting module is
added to the environment. See figure 8.3.

Last, to evaluate a module body, we build an environment, evaluating each
expression in the appropriate environment to get let∗ scoping. The proce-
dure defns-to-env produces an environment containing only the bind-
ings produced by the definitions defns (figure 8.4).

284 8 Modules

value-of-program : Program → ExpVal
(define value-of-program

(lambda (pgm)
(cases program pgm

(a-program (m-defns body)
(value-of body
(add-module-defns-to-env m-defns (empty-env)))))))

add-module-defns-to-env : Listof(Defn) × Env → Env
(define add-module-defns-to-env

(lambda (defns env)
(if (null? defns)

env
(cases module-definition (car defns)

(a-module-definition (m-name iface m-body)
(add-module-defns-to-env

(cdr defns)
(extend-env-with-module

m-name
(value-of-module-body m-body env)
env)))))))

Figure 8.3 Interpreter for SIMPLE-MODULES, part 1

The Checker

The job of the checker is to make sure that each module body satisfies its
interface, and that each variable is used consistently with its type.

The scoping rules of our language are fairly simple: Modules follow
let∗ scoping, putting into scope qualified variables for each of the bind-
ings exported by the module. The interface tells us the type of each qualified
variable. Declarations and definitions both follow let∗ scoping as well (see
figure 8.2).

As we did with the checker in chapter 7, we use the type environment to
keep track of information about each name that is in scope. Since we now
have module names, we bind module names in the type environment. Each
module name will be bound to its interface, which plays the role of a type.

8.1 The Simple Module System 285

value-of-module-body : ModuleBody × Env → TypedModule
(define value-of-module-body

(lambda (m-body env)
(cases module-body m-body
(defns-module-body (defns)

(simple-module
(defns-to-env defns env))))))

defns-to-env : Listof(Defn) × Env → Env
(define defns-to-env

(lambda (defns env)
(if (null? defns)
(empty-env)
(cases definition (car defns)

(val-defn (var exp)
(let ((val (value-of exp env)))
(let ((new-env (extend-env var val env)))

(extend-env var val
(defns-to-env
(cdr defns) new-env)))))))))

Figure 8.4 Interpreter for SIMPLE-MODULES, part 2

(define-datatype type-environment type-environment?
(empty-tenv)
(extend-tenv ...as before...)
(extend-tenv-with-module

(name symbol?)
(interface interface?)
(saved-tenv type-environment?)))

We find the type of a qualified variable from m take var by first look-
ing up m in the type environment, and then looking up the type of var in the
resulting interface.

lookup-qualified-var-in-tenv : Sym × Sym × Tenv → Type
(define lookup-qualified-var-in-tenv

(lambda (m-name var-name tenv)
(let ((iface (lookup-module-name-in-tenv tenv m-name)))
(cases interface iface

(simple-iface (decls)
(lookup-variable-name-in-decls var-name decls))))))

286 8 Modules

type-of-program : Program → Type
(define type-of-program

(lambda (pgm)
(cases program pgm

(a-program (module-defns body)
(type-of body
(add-module-defns-to-tenv module-defns

(empty-tenv)))))))

add-module-defns-to-tenv : Listof(ModuleDefn) × Tenv → Tenv
(define add-module-defns-to-tenv

(lambda (defns tenv)
(if (null? defns)

tenv
(cases module-definition (car defns)

(a-module-definition (m-name expected-iface m-body)
(let ((actual-iface (interface-of m-body tenv)))

(if (<:-iface actual-iface expected-iface tenv)
(let ((new-tenv

(extend-tenv-with-module
m-name
expected-iface
tenv)))

(add-module-defns-to-tenv
(cdr defns) new-tenv))

(report-module-doesnt-satisfy-iface
m-name expected-iface actual-iface))))))))

Figure 8.5 Checker for SIMPLE-MODULES, part 1

Just as in chapter 7, the process of typechecking a program mimics the
evaluation of the program, except that instead of keeping track of val-
ues, we keep track of types. Instead of value-of-program, we have
type-of-program, and instead of add-module-defns-to-env, we
have add-module-defns-to-tenv. The procedureadd-module-defns-
to-tenv checks each module to see whether the interface produced by
the module body matches the advertised interface, using the procedure
<:-iface. If it does, the module is added to the type environment. Oth-
erwise, an error is reported.

8.1 The Simple Module System 287

The interface of a module body associates each variable defined in the
body with the type of its definition. For example, if we looked at the body
from our first example,

[a = 33
x = -(a,1)
b = -(a,x)
c = -(x,b)]

we should get

[a : int
x : int
b : int
c : int]

Once we build an interface describing all the bindings exported by the
module body, we can compare it to the interface that the module advertises.

Recall that a simple interface contains a list of declarations. The procedure
defns-to-decls creates such a list, calling type-of to find the type of
each definition. At every step it also extends the local type environment, to
follow the correct let∗ scoping. (See figure 8.6.)

All that’s left is to compare the actual and expected types of each module,
using the procedure <:-iface. We intend to define <: so that if i1 <: i2,
then any module that satisfies interface i1 also satisfies interface i2. For exam-
ple

[u : int [u : int
v : bool <: z : int]
z : int]

since any module that satisfies the interface [u : int v : bool z :
int] provides all the values that are advertised by the interface [u : int
z : int].

For our simple module language, <:-iface just calls <:-decls, which
compares declarations. These procedures take a tenv argument that is not
used for the simple module system, but will be needed in section 8.2. See
figure 8.7.

The procedure <:-decls does the main work of comparing two sets of
declarations. If decls1 and decls2 are two sets of declarations, we say decls1 <:
decls2 if and only if any module that supplies bindings for the declarations in
decls1 also supplies bindings for the declarations in decls2. This can be assured

288 8 Modules

interface-of : ModuleBody × Tenv → Iface
(define interface-of

(lambda (m-body tenv)
(cases module-body m-body

(defns-module-body (defns)
(simple-iface
(defns-to-decls defns tenv))))))

defns-to-decls : Listof(Defn) × Tenv → Listof(Decl)
(define defns-to-decls

(lambda (defns tenv)
(if (null? defns)

’()
(cases definition (car defns)

(val-defn (var-name exp)
(let ((ty (type-of exp tenv)))

(cons
(val-decl var-name ty)
(defns-to-decls
(cdr defns)
(extend-tenv var-name ty tenv)))))))))

Figure 8.6 Checker for SIMPLE-MODULES, part 2

if decls1 contains a matching declaration for every declaration in decls2, as in
the example above.

The procedure <:-decls first checks decls1 and decls2. If decls2
is empty, then it makes no demands on decls1, so the answer is #t. If
decls2 is non-empty, but decls1 is empty, then decls2 requires some-
thing, but decls1 has nothing. So the answer is #f. Otherwise, we compare
the names of the first variables declared by decls1 and decls2. If they are
the same, then their types must match, and we recur on the rest of both lists
of declarations. If they are not the same, then we recur on the cdr of decls1
to look for something that matches the first declaration of decls2.

This completes the simple module system.

8.1 The Simple Module System 289

<:-iface : Iface × Iface × Tenv → Bool
(define <:-iface

(lambda (iface1 iface2 tenv)
(cases interface iface1
(simple-iface (decls1)

(cases interface iface2
(simple-iface (decls2)
(<:-decls decls1 decls2 tenv)))))))

<:-decls : Listof(Decl) × Listof(Decl) × Tenv → Bool
(define <:-decls

(lambda (decls1 decls2 tenv)
(cond
((null? decls2) #t)
((null? decls1) #f)
(else

(let ((name1 (decl->name (car decls1)))
(name2 (decl->name (car decls2))))

(if (eqv? name1 name2)
(and

(equal?
(decl->type (car decls1))
(decl->type (car decls2)))

(<:-decls (cdr decls1) (cdr decls2) tenv))
(<:-decls (cdr decls1) decls2 tenv)))))))

Figure 8.7 Comparing interfaces for SIMPLE-MODULES

Exercise 8.1 [�] Modify the checker to detect and reject any program that defines two
modules with the same name.

Exercise 8.2 [�] The procedure add-module-defn-to-env is not quite right,
because it adds all the values defined by the module, not just the ones in the inter-
face. Modify add-module-defn-to-env so that it adds to the environment only
the values declared in the interface. Does add-module-defn-to-tenv suffer from
the same problem?

Exercise 8.3 [�] Change the syntax of the language so that a qualified variable refer-
ence appears as m.v, rather than from m take v.

Exercise 8.4 [�] Change the expression language to include multiple let declara-
tions, multiargument procedures, and multiple letrec declarations, as in exer-
cise 7.24.

290 8 Modules

Exercise 8.5 [�] Allow let and letrec declarations to be used in module bodies.
For example, one should be able to write

module even-odd
interface
[even : int -> bool
odd : int -> bool]

body
letrec
bool local-odd (x : int) = ... (local-even -(x,1)) ...
bool local-even (x : int) = ... (local-odd -(x,1)) ...

in [even = local-even
odd = local-odd]

Exercise 8.6 [� �] Allow local module definitions to appear in module bodies. For
example, one should be able to write

module m1
interface
[u : int
v : int]

body
module m2
interface [v : int]
body [v = 33]

[u = 44
v = -(from m2 take v, 1)]

Exercise 8.7 [� �] Extend your solution to the preceding exercise to allow modules to
export other modules as components. For example, one should be able to write

module m1
interface
[u : int
n : [v : int]]

body
module m2
interface [v : int]
body [v = 33]

[u = 44
n = m2]

from m1 take n take v

Exercise 8.8 [� �] In our language, the module must produce the values in the same
order as the interface, but that could easily be fixed. Fix it.

Exercise 8.9 [� �] We said that our module system should document the dependen-
cies between modules. Add this capability to SIMPLE-MODULES by requiring a

8.1 The Simple Module System 291

depends-on clause in each module body and in the program body. Rather than
having all preceding modules in scope in a module m, a preceding module is in scope
only if it is listed in m’s depends-on clause. For example, consider the program

module m1 ...
module m2 ...
module m3 ...
module m4 ...
module m5
interface [...]
body
depends-on m1, m3
[...]

In the body of m5, qualified variables would be in scope only if they came from m1 or
m3. A reference to from m4 take x would be ill-typed, even if m4 exported a value
for x.

Exercise 8.10 [� � �] We could also use a feature like depends-on to control when
module bodies are evaluated. Add this capability to SIMPLE-MODULES by requir-
ing an imports clause to each module body and program body. imports is like
depends-on, but has the additional property that the body of a module is evaluated
only when it is imported by some other module (using an imports clause).

Thus if our language had print expressions, the program

module m1
interface [] body [x = print(1)]

module m2
interface [] body [x = print(2)]

module m3
interface []
body
import m2
[x = print(3)]

import m3, m1
33

would print 2, 3, and 1 before returning 33. Here the modules have empty interfaces,
because we are only concerned with the order in which the bodies are evaluated.

Exercise 8.11 [� � �] Modify the checker to use INFERRED as the language of expres-
sions. For this exercise you will need to modify <:-decls to use something other
than equal? to compare types. For example, in

module m
interface [f : (int -> int)]
body [f = proc (x : ?) x]

292 8 Modules

the actual type for f reported by the type inference engine will be something like
(tvar07 -> tvar07), and this should be accepted. On the other hand, we should
reject the module

module m
interface [f : (int -> bool)]
body [f = proc (x : ?) x]

even though the type inference engine will report the same type (tvar07 ->
tvar07) for f.

8.2 Modules That Declare Types

So far, our interfaces have declared only ordinary variables and their types.
In the next module language, OPAQUE-TYPES, we allow interfaces to
declare types as well. For example, in the definition

module m1
interface
[opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)]

body
...

the interface declares a type t, and some operations zero, succ, pred, and
is-zero that operate on values of that type. This is the interface that might
be associated with an implementation of arithmetic, as in section 2.1. Here
t is declared to be an opaque type, meaning that code outside the module
boundary does not know how values of this type are represented. All the
outside code knows is that it can manipulate values of type from m1 take
t with the procedures from m1 take zero, from m1 take succ, etc.
Thus from m1 take t behaves like a primitive type such as int or bool.

We will introduce two kinds of type declarations: transparent and opaque.
Both are necessary for a good module system.

8.2 Modules That Declare Types 293

8.2.1 Examples

To motivate this, consider our developers again. Alice has been using a
data structure consisting of a pair of integers, representing the x- and y-
coordinates of a point. She is using a language with types like those of
exercise 7.8, so her module, named Alices-points, has an interface with
declarations like

initial-point : (int -> pairof int * int)
increment-x : (pairof int * int -> pairof int * int)

Bob and Charlie complain about this. They don’t want to have to write
pairof int * int over and over again. Alice therefore rewrites her inter-
face to use transparent type declarations. This allows her to write

module Alices-points
interface
[transparent point = pairof int * int
initial-point : (int -> point)
increment-x : (point -> point)
get-x : (point -> int)
...]

This simplifies her task, since she has less writing to do, and it makes her
collaborators’ tasks simpler, because in their implementations they can write
definitions like

[transparent point = from Alices-points take point
foo = proc (p1 : point)

proc (p2 : point) ...
...]

For some projects, this would do nicely. On the other hand, the points
in Alice’s project happen to represent points on a metal track with a fixed
geometry, so the x- and y-coordinates are not independent. Alice’s imple-
mentation of increment-x carefully updates the y-coordinate to match the
change in the x-coordinate. But Bob doesn’t know this, and so he writes his
own procedure

increment-y = proc (p : point)
unpair x y = p
in newpair(x, -(y,-1))

Because Bob’s code changes the y-coordinate without changing the x-
coordinate correspondingly, Alice’s code no longer works correctly.

294 8 Modules

Worse yet, what if Alice decides to change the representation of points so
that the y-coordinate is in the first component? She can change her code
to match this new representation. But then Bob’s code would be broken,
because his increment-y procedure now changes the wrong component of
the pair.

Alice can solve her problem by making point an opaque data type. She
rewrites her interface to say

opaque point
initial-point : (int -> point)
increment-x : (point -> point)
get-x : (point -> int)

Now Bob can create new points using the procedure initial-point,
and he can manipulate points using from Alices-points take get-x
and from Alices-points take increment-x, but he can no longer
manipulate points using any procedures other than the ones in Alice’s inter-
face. In particular, he can no longer write the increment-y procedure, since
it manipulates a point using something other than the procedures in Alice’s
interface.

In the remainder of this section, we explore further examples of these facil-
ities.

Transparent Types

We begin by discussing transparent type declarations. These are sometimes
called concrete type declarations or type abbreviations.

Example 8.6 The program

module m1
interface
[transparent t = int
z : t
s : (t -> t)
is-z? : (t -> bool)]

body
[type t = int
z = 33
s = proc (x : t) -(x,-1)
is-z? = proc (x : t) zero?(-(x,z))]

proc (x : from m1 take t)
(from m1 take is-z? -(x,0))

has type (int -> bool).

8.2 Modules That Declare Types 295

Figure 8.8 Scopes for a module that declares types

The declaration transparent t = int in the interface binds t to the
type int in the rest of the interface, so we can write z : t. More impor-
tantly, it also binds from m1 take t to int in the rest of the program. We
call this a qualified type. Here we have used it to declare the type of the bound
variable z. The scope of a declaration is the rest of the interface and the rest
of the program after the module definition.

The definition type t = int in the body binds t to the type int in the
rest of the module body, so we could write s = proc (x : t)... . As
before, the scope of a definition is the rest of the body (see figure 8.8).

Of course, we can use any name we like for the type, and we can declare
more than one type. The type declarations can appear anywhere in the inter-
face, so long as each declaration precedes all of its uses.

296 8 Modules

Opaque Types

A module can also export opaque types by using an opaque-type declara-
tion. Opaque types are sometimes called abstract types.

Example 8.7 Let’s take the program in example 8.6 and replace the trans-
parent type declaration by an opaque one. The resulting program is

module m1
interface
[opaque t
z : t
s : (t -> t)
is-z? : (t -> bool)]

body
[type t = int
z = 33
s = proc (x : t) -(x,-1)
is-z? = proc (x : t) zero?(-(x,z))]

proc (x : from m1 take t)
(from m1 take is-z? -(x,0))

The declaration opaque t in the interface declares t to be the name of a
new opaque type. An opaque type behaves like a new primitive type, such
as int or bool. The named type t is bound to this opaque type in the rest of
the interface, and the qualified type from m1 take t is bound to the same
opaque type in the rest of the program. All the rest of the program knows
about the type from m1 take t is that from m1 take z is bound to a
value of that type, and that from m1 take s and from m1 take is-z?
are bound to procedures that can manipulate values of that type. This is the
abstraction boundary. The type checker guarantees that the evaluation of
an expression that has type from m1 take t is safe, so that the value of
the expression has been constructed only by these operators, as discussed on
page 239.

The corresponding definition type t = int defines t to be a name for
int inside the module body, but this information is hidden from the rest
of the program, because the rest of the program gets its bindings from the
module interface.

So -(x,0) is not well-typed, because the main program does not know
that values of type from m1 take t are actually values of type int.

8.2 Modules That Declare Types 297

Let’s change the program to remove the arithmetic operation, getting

module m1
interface
[opaque t
z : t
s : (t -> t)
is-z? : (t -> bool)]

body
[type t = int
z = 33
s = proc (x : t) -(x,-1)
is-z? = proc (x : t) zero?(-(x,z))]

proc (x : from m1 take t)
(from m1 take is-z? x)

Now we have a well-typed program that has type (from m1 take t ->
bool).

By enforcing this abstraction boundary, the type checker guarantees that
no program manipulates the values provided by the interface except through
the procedures that the interface provides. This gives us a mechanism to
enforce the distinction between the users of a data type and its implemen-
tation, as discussed in chapter 2. We next show some examples of this tech-
nique.

Example 8.8 If a program uses a module definition

module colors
interface
[opaque color
red : color
green : color
is-red? : (color -> bool)]

body
[type color = int
red = 0
green = 1
is-red? = proc (c : color) zero?(c)]

there is no way the program can figure out that from colors take
color is actually int, or that from colors take green is actually 1
(except, perhaps, by returning a color as the final answer and then printing
it out).

298 8 Modules

Example 8.9 The program

module ints1
interface
[opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)]

body
[type t = int
zero = 0
succ = proc(x : t) -(x,-5)
pred = proc(x : t) -(x,5)
is-zero = proc (x : t) zero?(x)]

let z = from ints1 take zero
in let s = from ints1 take succ

in (s (s z))

has type from ints1 take t. It has value 10, but we can manipulate this
value only through the procedures that are exported from ints1. This mod-
ule represents the integer k by the expressed value 5 ∗ k. In the notation of
section 2.1, k� = 5 ∗ k.

Example 8.10 In this module, k� = −3 ∗ k.

module ints2
interface
[opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)]

body
[type t = int
zero = 0
succ = proc(x : t) -(x,3)
pred = proc(x : t) -(x,-3)
is-zero = proc (x : t) zero?(x)]

let z = from ints2 take zero
in let s = from ints2 take succ

in (s (s z))

has type from ints2 take t and has value -6.

8.2 Modules That Declare Types 299

Example 8.11 In the preceding examples, we couldn’t manipulate the val-
ues directly, but we could manipulate them using the procedures exported
by the module. As we did in chapter 2, we can compose these procedures to
do useful work. Here we combine them to write a procedure to-int that
converts a value from the module back to a value of type int.

module ints1 ...as before...

let z = from ints1 take zero
in let s = from ints1 take succ
in let p = from ints1 take pred
in let z? = from ints1 take is-zero
in letrec int to-int (x : from ints1 take t) =

if (z? x)
then 0
else -((to-int (p x)), -1)

in (to-int (s (s z)))

has type int and has value 2.

Example 8.12 Here is the same technique used with the implementation of
arithmetic ints2.

module ints2 ...as before...

let z = from ints2 take zero
in let s = from ints2 take succ
in let p = from ints2 take pred
in let z? = from ints2 take is-zero
in letrec int to-int (x : from ints2 take t)

= if (z? x)
then 0
else -((to-int (p x)), -1)

in (to-int (s (s z)))

also has type int and value 2.
We show in section 8.3 how to abstract over these two examples.

300 8 Modules

Example 8.13 In the next program, we construct a module to encapsulate
a data type of booleans. The booleans are represented as integers, but that
fact is hidden from the rest of the program, as in example 8.8.

module mybool
interface
[opaque t
true : t
false : t
and : (t -> (t -> t))
not : (t -> t)
to-bool : (t -> bool)]

body
[type t = int
true = 0
false = 13
and = proc (x : t)

proc (y : t)
if zero?(x) then y else false

not = proc (x : t)
if zero?(x) then false else true

to-bool = proc (x : t) zero?(x)]

let true = from mybool take true
in let false = from mybool take false
in let and = from mybool take and
in ((and true) false)

has type from mybool take t, and has value 13.

Exercise 8.12 [�] In example 8.13, could the definition of and and not be moved from
inside the module to outside it? What about to-bool?

Exercise 8.13 [�] Write a module that implements arithmetic using a representation
in which the integer k is represented as 5 ∗ k + 3.

8.2 Modules That Declare Types 301

Exercise 8.14 [�] Consider the following alternate definition of mybool (exam-
ple 8.13):

module mybool
interface
[opaque t
true : t
false : t
and : (t -> (t -> t))
not : (t -> t)
to-bool : (t -> bool)]

body
[type t = int
true = 1
false = 0
and = proc (x : t)

proc (y : t)
if zero?(x) then false else y

not = proc (x : t)
if zero?(x) then true else false

to-bool = proc (x : t)
if zero?(x) then zero?(1) else zero?(0)]

Is there any program of type int that returns one value using the original definition
of mybool, but a different value using the new definition?

Exercise 8.15 [� �] Write a module that implements a simple abstraction of tables.
Your tables should be like environments, except that instead of binding symbols to
Scheme values, they bind integers to integers. The interface provides a value that rep-
resents an empty table and two procedures add-to-table and lookup-in-table
that are analogous to extend-env and apply-env. Since our language has only
one-argument procedures, we get the equivalent of multiargument procedures by
using Currying (exercise 3.20). You may model the empty table with a table that
returns 0 for any query. Here is an example using this module.

module tables
interface
[opaque table
empty : table
add-to-table : (int -> (int -> (table -> table)))
lookup-in-table : (int -> (table -> int))]

body
[type table = (int -> int)
...]

let empty = from tables take empty
in let add-binding = from tables take add-to-table
in let lookup = from tables take lookup-in-table

302 8 Modules

in let table1 = (((add-binding 3) 300)
(((add-binding 4) 400)
(((add-binding 3) 600)

empty)))
in -(((lookup 4) table1),

((lookup 3) table1))

This program should have type int. The table table1 binds 4 to 400 and 3 to 300,
so the value of the program should be 100.

8.2.2 Implementation

We now extend our system to model transparent and opaque type declara-
tions and qualified type references.

Syntax and the Interpreter

We add syntax for two new kinds of types: named types (like t) and qualified
types (like from m1 take t).

Type ::= Identifier
named-type (name)

Type ::= from Identifier take Identifier
qualified-type (m-name t-name)

We add two new kinds of declarations, for opaque and transparent types.

Decl ::= opaque Identifier
opaque-type-decl (t-name)

Decl ::= transparent Identifier = Type
transparent-type-decl (t-name ty)

We also add a new kind of definition: a type definition. This will be used
to define both opaque and transparent types.

Defn ::= type Identifier = Type
type-defn (name ty)

The interpreter doesn’t look at types or declarations, so the only change to
the interpreter is to make it ignore type definitions.

8.2 Modules That Declare Types 303

defns-to-env : Listof(Defn) × Env → Env
(define defns-to-env

(lambda (defns env)
(if (null? defns)
(empty-env)
(cases definition (car defns)

(val-defn (var exp) ...as before...)
(type-defn (type-name type)

(defns-to-env (cdr defns) env))))))

The Checker

The changes to the checker are more substantial, since all the manipulations
involving types must be extended to handle the new types.

First, we introduce a systematic way of handling opaque and transparent
types. An opaque type behaves like a primitive type, such as int or bool.
Transparent types, on the other hand, are transparent, as the name suggests:
they behave exactly like their definitions. So every type is equivalent to one
that is given by the grammar

Type ::= int | bool | from m take t | (Type -> Type)

where t is declared as an opaque type in m. We call a type of this form an
expanded type.

We next extend type environments to handle new types. Our type envi-
ronments will bind each named type or qualified type to an expanded type.
Our new definition of type environments is

(define-datatype type-environment type-environment?
(empty-tenv)
(extend-tenv ...as before...)
(extend-tenv-with-module ...as before...)
(extend-tenv-with-type

(name type?)
(type type?)
(saved-tenv type-environment?)))

subject to the condition that type is always an expanded type. This condi-
tion is an invariant, as discussed on page 10.

We next write a procedure, expand-type, which takes a type and a type
environment, and which expands the type using the type bindings in the
type environment. It looks up named types and qualified types in the type
environment, relying on the invariant that the resulting types are expanded,
and for a proc type it recurs on the argument and result types.

304 8 Modules

expand-type : Type × Tenv → ExpandedType
(define expand-type

(lambda (ty tenv)
(cases type ty

(int-type () (int-type))
(bool-type () (bool-type))
(proc-type (arg-type result-type)

(proc-type
(expand-type arg-type tenv)
(expand-type result-type tenv)))

(named-type (name)
(lookup-type-name-in-tenv tenv name))

(qualified-type (m-name t-name)
(lookup-qualified-type-in-tenv m-name t-name tenv)))))

In order to maintain this invariant, we must be sure to call expand-type
whenever we extend the type environment. There are three such places:

• in type-of in the checker,

• where we process a list of definitions, with defns-to-decls, and

• where we add a module to the type environment, in add-module-defns-
to-tenv.

In the checker, we replace each call of the form

(extend-tenv sym ty tenv)

by

(extend-tenv var (expand-type ty tenv) tenv)

In defns-to-decls, when we encounter a type definition, we expand
its right-hand side and add it to the type environment. The type returned by
type-of is guaranteed to be expanded, so we don’t need to expand it again.
We turn a type definition into a transparent type declaration, since in the
body all type bindings are transparent. In add-module-defns-to-tenv,
we call extend-tenv-with-module, adding an interface to the type
environment. In this case we need to expand the interface to make
sure that all the types it contains are expanded. To do this, we modify
add-module-defns-to-tenv to call expand-iface. See figure 8.9.

The procedure expand-iface (figure 8.10) calls expand-decls. We
separate these procedures in preparation for section 8.3.

8.2 Modules That Declare Types 305

defns-to-decls : Listof(Defn) × Tenv → Listof(Decl)
(define defns-to-decls

(lambda (defns tenv)
(if (null? defns)
’()
(cases definition (car defns)

(val-defn (var-name exp)
(let ((ty (type-of exp tenv)))
(let ((new-env (extend-tenv var-name ty tenv)))

(cons
(val-decl var-name ty)
(defns-to-decls (cdr defns) new-env)))))

(type-defn (name ty)
(let ((new-env

(extend-tenv-with-type
name (expand-type ty tenv) tenv)))

(cons
(transparent-type-decl name ty)
(defns-to-decls (cdr defns) new-env))))))))

add-module-defns-to-tenv : Listof(ModuleDefn) × Tenv → Tenv
(define add-module-defns-to-tenv

(lambda (defns tenv)
(if (null? defns)
tenv
(cases module-definition (car defns)

(a-module-definition (m-name expected-iface m-body)
(let ((actual-iface (interface-of m-body tenv)))
(if (<:-iface actual-iface expected-iface tenv)

(let ((new-env
(extend-tenv-with-module m-name
(expand-iface

m-name expected-iface tenv)
tenv)))

(add-module-defns-to-tenv
(cdr defns) new-env))

(report-module-doesnt-satisfy-iface
m-name expected-iface actual-iface))))))))

Figure 8.9 Checker for OPAQUE-TYPES, part 1

306 8 Modules

The procedure expand-decls loops through a set of declarations, creat-
ing a new type environment in which every type or variable name is bound
to an expanded type. One complication is that declarations follow let∗ scop-
ing: each declaration in a set of declarations is in scope in all the following
declarations.

To see what this means, consider the module definition

module m1
interface
[opaque t
transparent u = int
transparent uu = (t -> u)
% point A
f : uu
...]

body
[...]

In order to satisfy the invariant, m1 should be bound in the type environ-
ment to an interface containing the declarations

[transparent t = from m1 take t
transparent u = int
transparent uu = (from m1 take t -> int)
f : (from m1 take t -> int)
...]

If we do this, then any time we retrieve a type from this type environment,
we will get an expanded type, as desired.

At point A, immediately before the declaration of f, the type environment
should bind

t to from m1 take t
u to int
uu to (from m1 take t -> int)

We call the type environment at points like point A above the internal type
environment. This will be passed as an argument to expand-decls.

We can now write expand-decls. Like defns->decls, this procedure
creates only transparent declarations, since its purpose is to create a data
structure in which qualified types can be looked up.

Last, we modify <:-decls to handle the two new kinds of declarations.
We must now deal with the scoping relations inside a set of declarations. For
example, if we are comparing

8.2 Modules That Declare Types 307

expand-iface : Sym × Iface × Tenv → Iface
(define expand-iface

(lambda (m-name iface tenv)
(cases interface iface
(simple-iface (decls)

(simple-iface
(expand-decls m-name decls tenv))))))

expand-decls : Sym × Listof(Decl) × Tenv → Listof(Decl)
(define expand-decls

(lambda (m-name decls internal-tenv)
(if (null? decls) ()
(cases declaration (car decls)

(opaque-type-decl (t-name)
(let ((expanded-type

(qualified-type m-name t-name)))
(let ((new-env

(extend-tenv-with-type
t-name expanded-type internal-tenv)))

(cons
(transparent-type-decl t-name expanded-type)
(expand-decls
m-name (cdr decls) new-env)))))

(transparent-type-decl (t-name ty)
(let ((expanded-type

(expand-type ty internal-tenv)))
(let ((new-env

(extend-tenv-with-type
t-name expanded-type internal-tenv)))

(cons
(transparent-type-decl t-name expanded-type)
(expand-decls
m-name (cdr decls) new-env)))))

(val-decl (var-name ty)
(let ((expanded-type

(expand-type ty internal-tenv)))
(cons

(val-decl var-name expanded-type)
(expand-decls

m-name (cdr decls) internal-tenv))))))))

Figure 8.10 Checker for OPAQUE-TYPES, part 2

308 8 Modules

[transparent t = int
x : bool <: [y : int]
y : t]

when we get to the declaration of y, we need to know that t refers to the
type int. So when we recur down the list of declarations, we need to
extend the type environment as we go, much as we built internal-tenv in
expand-decls. We do this by calling extend-tenv-with-decl, which
takes a declaration and translates it to an appropriate extension of the type
environment (figure 8.11).

We always use decls1 for this extension. To see why, consider the com-
parison

[transparent t = int [opaque t
transparent u = (t -> t) <: transparent u = (t -> int)
f : (t -> u)] f : (t -> (int -> int))]

This comparison should succeed, since a module body that supplies the
bindings on the left would be a correct implementation of the interface on
the right.

When we compare the two definitions of the type u, we need to know
that the type t is in fact int. The same technique works even when the
declaration on the left is not present on the right, as illustrated by the decla-
ration of t in the first example above. We call expand-type to maintain the
invariant that all types in the type environment are expanded. The choice
of module names in the last clause of extend-tenv-with-decl doesn’t
matter, since the only operation on qualified types is equal?. So using
fresh-module-name is enough to guarantee that this qualified type is new.

Now we get to the key question: how do we compare declarations? Dec-
larations can match only if they declare the same name (either a variable or
a type). If a pair of declarations have the same name, there are exactly four
ways in which they can match:

• They are both value declarations, and their types match.

• They are both opaque type declarations.

• They are both transparent type declarations, and their definitions match.

• decl1 is a transparent type declaration, and decl2 is an opaque type
declaration. For example, imagine that our module has an interface that

8.2 Modules That Declare Types 309

<:-decls : Listof(Decl) × Listof(Decl) × Tenv → Bool
(define <:-decls

(lambda (decls1 decls2 tenv)
(cond
((null? decls2) #t)
((null? decls1) #f)
(else

(let ((name1 (decl->name (car decls1)))
(name2 (decl->name (car decls2))))

(if (eqv? name1 name2)
(and

(<:-decl
(car decls1) (car decls2) tenv)

(<:-decls
(cdr decls1) (cdr decls2)
(extend-tenv-with-decl
(car decls1) tenv)))

(<:-decls
(cdr decls1) decls2
(extend-tenv-with-decl

(car decls1) tenv))))))))

extend-tenv-with-decl : Decl × Tenv → Tenv
(define extend-tenv-with-decl

(lambda (decl tenv)
(cases declaration decl
(val-decl (name ty) tenv)
(transparent-type-decl (name ty)

(extend-tenv-with-type
name
(expand-type ty tenv)
tenv))

(opaque-type-decl (name)
(extend-tenv-with-type

name
(qualified-type (fresh-module-name ’%unknown) name)
tenv)))))

Figure 8.11 Checker for OPAQUE-TYPES, part 3

310 8 Modules

declares opaque t and a body that defines type t = int. This should
be accepted. The procedure defns-to-decls turns the definition type
t = int into a transparent type declaration, so the test

actual-iface <: expected-iface

in add-module-defn-to-tenvwill ask whether

(transparent t = int) <: (opaque t)

Since the module should be accepted, this test should return true.

This tells us that something with a known type is always usable as a thing
with an unknown type. But the reverse is false. For example,

(opaque t) <: (transparent t = ty)

should be false, because the value with an opaque type may have some
actual type other than int, and a module that satisfies opaque t may
not satisfy transparent t = int.

This gives us the code in figure 8.12. The definition of equiv-type?
expands its types, so that in examples like

[transparent t = int x : bool y : t] <: [y : int]

above, the t on the left will be expanded to int, and the match will succeed.

Exercise 8.16 [�] Extend the system of this section to use the language of exercise 7.24,
and then rewrite exercise 8.15 to use multiple arguments instead of procedure-
returning procedures.

Exercise 8.17 [� �] As you did in exercise 8.8, remove the restriction that a module
must produce the values in the same order as the interface. Remember, however, that
the definition must respect scoping rules, especially for types.

Exercise 8.18 [� �] Our code depends on the invariant that every type in a type envi-
ronment is already expanded. We enforce this invariant by calling expand-type in
many places in the code. On the other hand, it would be easy to break the system
by forgetting to call expand-type. Refactor the code so that there are fewer calls to
expand-type, and the invariant is maintained more robustly.

8.3 Module Procedures 311

<:-decl : Decl × Decl × Tenv → Bool
(define <:-decl

(lambda (decl1 decl2 tenv)
(or
(and

(val-decl? decl1)
(val-decl? decl2)
(equiv-type?

(decl->type decl1)
(decl->type decl2) tenv))

(and
(transparent-type-decl? decl1)
(transparent-type-decl? decl2)
(equiv-type?

(decl->type decl1)
(decl->type decl2) tenv))

(and
(transparent-type-decl? decl1)
(opaque-type-decl? decl2))

(and
(opaque-type-decl? decl1)
(opaque-type-decl? decl2)))))

equiv-type? : Type × Type × Tenv → Bool
(define equiv-type?

(lambda (ty1 ty2 tenv)
(equal?
(expand-type ty1 tenv)
(expand-type ty2 tenv))))

Figure 8.12 Checker for OPAQUE-TYPES, part 4

8.3 Module Procedures

The programs in OPAQUE-TYPES have a fixed set of dependencies. Perhaps
module m4 depends on m3 and m2, which depends on m1. Sometimes we say
the dependencies are hard-coded. In general, such hard-coded dependencies
lead to bad program design, because they make it difficult to reuse modules.
In this section, we add to our system a facility for module procedures, some-
times called parameterized modules, that allow module reuse. We call the new
language PROC-MODULES.

312 8 Modules

8.3.1 Examples

Consider our three developers again. Charlie wants to use some of the facil-
ities of Alice’s module. But Alice’s module uses a database that is supplied
by Bob’s module, and Charlie wants to use a different database, which is
supplied by some other module (written by Diana).

To make this possible, Alice rewrites her code using module procedures.
A module procedure is much like a procedure, except that it works with
modules, rather than with expressed values. At the module level, interfaces
are like types. Just as the type of a procedure in CHECKED specifies the type
of its argument and the type of its result, the interface of a module procedure
specifies the interface of its argument and the interface of its result.

Alice writes a new module Alices-point-builder that begins

module Alices-point-builder
interface
((database : [opaque db-type

opaque node-type
insert-node : (node-type ->

(db-type -> db-type))
...])

=> [opaque point
initial-point : (int -> point)
...])

This interface says that Alices-point-builder will be a module pro-
cedure. It will expect as an argument a module that will export two
types, db-type and node-type, a procedure insert-node, and per-
haps some other values. Given such a module, Alices-point-builder
should produce a module that exports an opaque type point, a proce-
dure initial-point, and perhaps some other values. The interface of
Alices-point-builder also specifies a local name for its argument; we
will see later why this is necessary.

The body of Alice’s new module begins

body
module-proc (m : [opaque db-type

opaque node-type
insert-node : (node-type ->

(db-type -> db-type))
...])

[type point = ...
initial-point = ... from m take insert-node ...
...]

8.3 Module Procedures 313

Just as an ordinary procedure expression looks like

proc (var : t) e

a module procedure looks like

module-proc (m : [...]) [...]

In this example Alice has chosen m as the name of the bound variable in
the module procedure; this need not be the same as the local name in the
interface. We repeat the interface of the argument because the scope of a
module interface never extends into the module body. This can be fixed (see
exercise 8.27).

Now Alice rebuilds her module by writing

module Alices-points
interface
[opaque point
initial-point : (int -> point)
...]

body
(Alices-point-builder Bobs-db-Module)

and Charlie builds his module by writing

module Charlies-points
interface
[opaque point
initial-point : (int -> point)
...]

body
(Alices-point-builder Dianas-db-module)

Module Alices-points uses Bobs-db-module for the database. Mod-
ule Charlies-points uses Dianas-db-module for the database. This
organization allows the code in Alices-point-builder to be used twice.
Not only does this avoid having to write the code twice, but if the code needs
to be changed, the changes can be made in one place and they will be prop-
agated automatically to both Alices-points and Charlies-points.

For another example, consider examples 8.11 and 8.12. In these two exam-
ples, we used what was essentially the same code for to-int. In exam-
ple 8.11 it was

letrec int to-int (x : from ints1 take t)
= if (z? x)
then 0
else -((to-int (p x)), -1)

314 8 Modules

and in example 8.12 the type of x was from ints2 take t. So we rewrite
this as a module parameterized on the module that produces the integers in
question.

Example 8.14 The declaration

module to-int-maker
interface
((ints : [opaque t

zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

=> [to-int : (from ints take t -> int)])
body
module-proc (ints : [opaque t

zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

[to-int
= let z? = from ints take is-zero
in let p = from ints take pred
in letrec int to-int (x : from ints take t)

= if (z? x)
then 0
else -((to-int (p x)), -1)

in to-int]

defines a module procedure. The interface says that this module takes as
a module ints that implements the interface of arithmetic, and produces
another module that exports a to-int procedure that converts ints’s type
t to an integer. The resulting to-int procedure cannot depend on the
implementation of arithmetic, since here we don’t know what that imple-
mentation is! In this code ints is declared twice: once in the interface and
once in the body. This is because, as we said earlier, the scope of the declara-
tion in the interface is local to the interface, and does not include the body of
the module.

8.3 Module Procedures 315

Let’s look at a few examples of to-int in action:

Example 8.15

module to-int-maker ...as before...

module ints1 ...as before...

module ints1-to-int
interface [to-int : (from ints1 take t -> int)]
body
(to-int-maker ints1)

let two1 = (from ints1 take succ
(from ints1 take succ
from ints1 take zero))

in (from ints1-to-int take to-int
two1)

has type int and value 2. Here we first define the modules to-int-maker,
and ints1. Then we apply to-int-maker to ints1, getting the module
ints1-to-int, which exports a binding for from ints1-to-int take
to-int.

Here’s an example of to-int-maker used twice, for two different imple-
mentations of arithmetic.

Example 8.16

module to-int-maker ...as before...

module ints1 ...as before...

module ints2 ...as before...

module ints1-to-int
interface [to-int : (from ints1 take t -> int)]
body (to-int-maker ints1)

module ints2-to-int
interface [to-int : (from ints2 take t -> int)]
body (to-int-maker ints2)

let s1 = from ints1 take succ
in let z1 = from ints1 take zero
in let to-ints1 = from ints1-to-int take to-int

316 8 Modules

in let s2 = from ints2 take succ
in let z2 = from ints2 take zero
in let to-ints2 = from ints2-to-int take to-int

in let two1 = (s1 (s1 z1))
in let two2 = (s2 (s2 z2))
in -((to-ints1 two1), (to-ints2 two2))

has type int and value 0. If we had replaced (to-ints2 two2)
by (to-ints2 two1), the program would not be well-typed, because
to-ints2 expects an argument from the ints2 representation of arith-
metic, and two1 is a value from the ints1 representation of arithmetic.

Exercise 8.19 [�] The code for creating two1 and two2 in example 8.16 is repetitive
and therefore ready for abstraction. Complete the definition of a module

module from-int-maker
interface
((ints : [opaque t

zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

=> [from-int : (int -> from ints take t)])
body
...

that converts an integer expressed value to its representation in the module ints.
Use your module to reproduce the computation of example 8.16. Use an argument
bigger than two.

Exercise 8.20 [�] Complete the definition of the module

module sum-prod-maker
interface
((ints : [opaque t

zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

=> [plus : (from ints take t
-> (from ints take t

-> from ints take t))
times : (from ints take t

-> (from ints take t
-> from ints take t))])

body
[plus = ...
times = ...]

8.3 Module Procedures 317

to define a module procedure that takes an implementation of arithmetic and pro-
duces sum and product procedures for that implementation. Use the definition of
plus from page 33, and something similar for times.

Exercise 8.21 [�] Write a module procedure that takes an implementation of arith-
metic ints and produces another implementation of arithmetic in which the number
k is represented by the representation of 2 ∗ k in ints.

Exercise 8.22 [�] Complete the definition of the module

module equality-maker
interface
((ints : [opaque t

zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

=> [equal : (from ints take t
-> (from ints take t

-> bool))])
body
...

to define a module procedure that takes an implementation of arithmetic and pro-
duces an equality procedure for that implementation.

Exercise 8.23 [�] Write a module table-of that is similar to the tables module of
exercise 8.15, except that it is parameterized over its contents, so one could write

module mybool-tables
interface
[opaque table
empty : table
add-to-table : (int ->

(from mybool take t ->
(table -> table)))

lookup-in-table : (int ->
(table ->
from mybool take t))]

body
(table-of mybool)

to define a table containing values of type from mybool take t.

318 8 Modules

8.3.2 Implementation

Syntax

Adding module procedures to our language is much like adding procedures.
A module procedure has an interface that is much like a proc type.

Iface ::= ((Identifier : Iface) => Iface)
proc-iface (param-name param-iface result-iface)

Although this interface looks a little like an ordinary procedure type, it
is different in two ways. First, it describes functions from module values
to module values, rather than from expressed values to expressed values.
Second, unlike a procedure type, it gives a name to the input to the func-
tion. This is necessary because the interface of the output may depend on
the value of the input, as in the type of to-int-maker:

((ints : [opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

=> [to-int : (from ints take t -> int)])

to-int-maker takes a module ints and produces a module whose type
depends not just on the type of ints, which is fixed, but on ints itself.
When we apply to-int-maker to ints1, as we did in example 8.16, we
get a module with interface

[to-int : (from ints1 take t -> int)]

but when we apply it to ints2, we get a module with a different interface

[to-int : (from ints2 take t -> int)]

We extend expand-iface to treat these new interfaces as already
expanded. This works because the parameter and result interfaces will be
expanded when needed.

expand-iface : Sym × Iface × Tenv → Iface
(define expand-iface

(lambda (m-name iface tenv)
(cases interface iface

(simple-iface (decls) ...as before...)
(proc-iface (param-name param-iface result-iface)

iface))))

8.3 Module Procedures 319

We will need new kinds of module bodies to create a module procedure,
to refer to the bound variable of a module procedure, and to apply such a
procedure.

ModuleBody ::= module-proc (Identifier : Iface) ModuleBody
proc-module-body (m-name m-type m-body)

ModuleBody ::= Identifier
var-module-body (m-name)

ModuleBody ::= (Identifier Identifier)
app-module-body (rator rand)

The Interpreter

We first add a new kind of module, analogous to a procedure.

(define-datatype typed-module typed-module?
(simple-module

(bindings environment?))
(proc-module

(b-var symbol?)
(body module-body?)
(saved-env environment?)))

We extend value-of-module-body to handle the new possibilities for
a module body. The code is much like that for variable references and proce-
dure calls in expressions (figure 8.13).

The Checker

We can write down rules like the ones in section 7.2 for our new kinds
of module bodies. These rules are shown in figure 8.14. We write
(� body tenv) = i instead of (interface-of body tenv) = i in order to
make the rules fit on the page.

A module variable gets its type from the type environment, as one might
expect. A module-proc gets its type from the type of its parameter and the
type of its body, just like the procedures in CHECKED.

An application of a module procedure is treated much like a procedure call
in CHECKED. But there are two important differences.

First, the type of the operand (i2 in the rule IFACE-M-APP) need not be
exactly the same as the parameter type (i1). We require only that i2 <: i1. This
is sufficient, since i2 <: i1 implies that any module that satisfies the interface
i2 also satisfies the interface i1, and is therefore an acceptable argument to the
module procedure.

320 8 Modules

value-of-module-body : ModuleBody × Env → TypedModule
(define value-of-module-body

(lambda (m-body env)
(cases module-body m-body

(defns-module-body (defns) ...as before...)
(var-module-body (m-name)

(lookup-module-name-in-env m-name env))
(proc-module-body (m-name m-type m-body)

(proc-module m-name m-body env))
(app-module-body (rator rand)

(let ((rator-val
(lookup-module-name-in-env rator env))

(rand-val
(lookup-module-name-in-env rand env)))

(cases typed-module rator-val
(proc-module (m-name m-body env)

(value-of-module-body m-body
(extend-env-with-module

m-name rand-val env)))
(else

(report-bad-module-app rator-val))))))))

Figure 8.13 value-of-module-body

IFACE-M-VAR

(� m tenv) = tenv(m)

IFACE-M-PROC

(� body [m=i1]tenv) = i′1
(� (m-proc (m:i1) body) tenv) = ((m:i1) => i′1)

IFACE-M-APP

tenv(m1) = ((m:i1) => i′1) tenv(m2) = i2

i2 <: i1

(� (m1 m2) tenv) = i′1[m2/m]

Figure 8.14 Rules for typing new module bodies

8.3 Module Procedures 321

Second, we substitute the operand m2 for m in the result type i′1. Con-
sider the example on page 318, where we applied the module procedure
to-int-maker, which has the interface

((ints : [opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)])

=> [to-int : (from ints take t -> int)])

to ints1 and ints2. When we apply to-int-maker to ints1, the substi-
tution gives us the interface

[to-int : (from ints1 take t -> int)]

When we apply it to ints2, the substitution gives the interfaces

[to-int : (from ints2 take t -> int)]

as desired.
From these rules, it is easy to write down the code for interface-of (fig-

ure 8.15). When we check the body of a module-proc, we add the param-
eter to the type environment as if it had been a top-level module. This code
uses the procedure rename-in-iface to perform the substitution on the
result interface.

Last, we extend <:-iface to handle the new types. The rule for compar-
ing proc-ifaces is

i2 <: i1 i′1[m′/m1] <: i′2[m′/m2] m′ not in i′1 or i′2
((m1:i1) => i′1) <: ((m2:i2) => i′2)

In order to have ((m1:i1) => i′1) <: ((m2:i2) => i′2), it must be the
case that any module m0 that satisfies the first interface also satisfies the sec-
ond interface. This means that any module with interface i2 can be passed as
an argument to m0, and any module that m0 produces will satisfy i′2.

For the first requirement, we insist that i2 <: i1. This guarantees that any
module that satisfies i2 can be passed as an argument to m0. Note the rever-
sal: we say that subtyping is contravariant in the parameter type.

What about the result types? We might require that i′1 <: i′2. Unfortunately,
this doesn’t quite work. i′1 may have instances of the module variable m1 in
it, and i′2 may have instances of m2 in it. So to compare them, we rename
both m1 and m2 to some new module variable m′. Once we do that, we can
compare them sensibly. This leads to the requirement i′1[m′/m1] <: i′2[m′/m2].

322 8 Modules

interface-of : ModuleBody × Tenv → Iface
(define interface-of

(lambda (m-body tenv)
(cases module-body m-body

(var-module-body (m-name)
(lookup-module-name-in-tenv tenv m-name))

(defns-module-body (defns)
(simple-iface
(defns-to-decls defns tenv)))

(app-module-body (rator-id rand-id)
(let ((rator-iface

(lookup-module-name-in-tenv tenv rator-id))
(rand-iface
(lookup-module-name-in-tenv tenv rand-id)))

(cases interface rator-iface
(simple-iface (decls)

(report-attempt-to-apply-simple-module rator-id))
(proc-iface (param-name param-iface result-iface)

(if (<:-iface rand-iface param-iface tenv)
(rename-in-iface

result-iface param-name rand-id)
(report-bad-module-application-error

param-iface rand-iface m-body))))))
(proc-module-body (rand-name rand-iface m-body)

(let ((body-iface
(interface-of m-body

(extend-tenv-with-module rand-name
(expand-iface rand-name rand-iface tenv)
tenv))))

(proc-iface rand-name rand-iface body-iface))))))

Figure 8.15 Checker for PROC-MODULES, part 1

The code to decide this relation is relatively straightforward (figure 8.16).
When deciding i′1[m′/m1] <: i′2[m′/m2] we extend the type environment to
provide a binding for m′. We associate m′ with i1, since it has fewer compo-
nents than i2. When we call extend-tenv-with-module to compare the
result types, we call expand-iface to maintain the invariant.

And now we’re done. Go have a sundae, with anything that satisfies the
ice cream interface, anything that satisfies the hot-topping interface, and any-
thing that satisfies the nuts interface. Don’t worry about how any of the
pieces are constructed, so long as they taste good!

8.3 Module Procedures 323

<:-iface : Iface × Iface × Tenv → Bool
(define <:-iface

(lambda (iface1 iface2 tenv)
(cases interface iface1
(simple-iface (decls1)

(cases interface iface2
(simple-iface (decls2)
(<:-decls decls1 decls2 tenv))

(proc-iface (param-name2 param-iface2 result-iface2)
#f)))

(proc-iface (param-name1 param-iface1 result-iface1)
(cases interface iface2

(simple-iface (decls2) #f)
(proc-iface (param-name2 param-iface2 result-iface2)
(let ((new-name (fresh-module-name param-name1)))

(let ((result-iface1
(rename-in-iface
result-iface1 param-name1 new-name))

(result-iface2
(rename-in-iface
result-iface2 param-name2 new-name)))

(and
(<:-iface param-iface2 param-iface1 tenv)
(<:-iface result-iface1 result-iface2

(extend-tenv-with-module
new-name
(expand-iface new-name param-iface1 tenv)
tenv)))))))))))

Figure 8.16 Checker for PROC-MODULES, part 2

Exercise 8.24 [�] Application of modules is currently allowed only for identifiers.
What goes wrong with the type rule for application if we try to check an application
like (m1 (m2 m3))?

Exercise 8.25 [�] Extend PROC-MODULES so that a module can take multiple argu-
ments, analogously to exercise 3.21.

324 8 Modules

Exercise 8.26 [� �] Extend the language of module bodies to replace the production
for module application by

ModuleBody ::= (ModuleBody ModuleBody)
app-module-body (rator rand)

Exercise 8.27 [� � �] In PROC-MODULES, we wind up having to write interfaces like

[opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)]

over and over again. Add to the grammar for programs a facility for named inter-
faces, so we could write

interface int-interface = [opaque t
zero : t
succ : (t -> t)
pred : (t -> t)
is-zero : (t -> bool)]

module make-to-int
interface
((ints : int-interface)
=> [to-int : from ints take t -> int])

body
...

9 Objects and Classes

Many programming tasks require the program to manage some piece of state
through an interface. For example, a file system has internal state, but we
access and modify that state only through the file system interface. Often, the
piece of state spans several variables, and changes to those variables must be
coordinated in order to maintain the consistency of the state. One therefore
needs some technology to ensure that the various variables that constitute
the state are updated in a coordinated manner. Object-oriented programming
is a useful technology for accomplishing this task.

In object-oriented programming, each managed piece of state is called
an object. An object consists of several stored quantities, called its fields,
with associated procedures, called methods, that have access to the fields.
The operation of calling a method is often viewed as sending the method
name and arguments as a message to the object; this is sometimes called the
message-passing view of object-oriented programming.

Procedures in stateful languages, like those in chapter 4 give another
example of the power of programming with objects. A procedure is an object
whose state is contained in its free variables. A closure has a single behav-
ior: it may be invoked on some arguments. For example, the procedure g on
page 105 controls the state of a counter, and the only thing one can do with
this state is to increment it. More often, however, one wants an object to have
several behaviors. Object-oriented programming languages provide support
for this ability.

326 9 Objects and Classes

Often, one needs to manage several pieces of state with the same meth-
ods. For example, one might have several file systems or several queues in a
program. To facilitate the sharing of methods, object-oriented programming
systems typically provide classes, which are structures that specify the fields
and methods of each such object. Each object is created as a class instance.

Similarly, one may often have several classes with fields and methods
that are similar but not identical. To facilitate the sharing of implementa-
tion, object-oriented languages typically provide inheritance, which allows
the programmer to define a new class as a small modification of an existing
class by adding or changing the behavior of some methods, or by adding
fields. In this case, we say the new class inherits from or extends the old class,
since the rest of the class’s behavior is inherited from the original class.

Whether program elements are modeling real-world objects or artificial
aspects of a system’s state, a program’s structure is often clarified if it can be
composed of objects that combine both behavior and state. It is also natural
to associate behaviorally similar objects with the same class.

Real-world objects typically have some state and some behavior that either
controls or is controlled by that state. For example, cats can eat, purr, jump,
and lie down, and these activities are controlled by their current state, includ-
ing how hungry and tired they are.

Objects and modules have many similarities, but they are very different.
Both modules and classes provide a mechanism for defining opaque types.
However, an object is a data structure with behavior; a module is just a set
of bindings. One may have many objects of the same class; most module
systems do not offer a similar capability. On the other hand, module systems
such as PROC-MODULES allow a much more flexible way of controlling the
visibility of names. Modules and classes can work fruitfully together.

9.1 Object-Oriented Programming

In this chapter, we study a simple object-oriented language that we call
CLASSES. A CLASSES program consists of a sequence of class declarations
followed by an expression that may make use of those classes.

Figure 9.1 shows a simple program in this language. It defines c1 as a
class that inherits from object. Each object of class c1 will contain two
fields named i and j. The fields are called members or instance variables. The
class c1 supports three methods, sometimes called member functions, named
initialize, countup, and getstate. Each method consists of its method

9.1 Object-Oriented Programming 327

class c1 extends object
field i
field j
method initialize (x)
begin
set i = x;
set j = -(0,x)

end
method countup (d)
begin
set i = +(i,d);
set j = -(j,d)

end
method getstate () list(i,j)

let t1 = 0
t2 = 0
o1 = new c1(3)

in begin
set t1 = send o1 getstate();
send o1 countup(2);
set t2 = send o1 getstate();
list(t1,t2)

end

Figure 9.1 A simple object-oriented program

name, its method vars (also called method parameters), and its method body. The
method names correspond to the kinds of messages to which instances of c1
can respond. We sometimes refer to “c1’s countup method.”

In this example, each of the methods of the class maintains the integrity
constraint or invariant that i = − j. A real programming example would, of
course, likely have far more complex integrity constraints.

The program in figure 9.1 first initializes three variables. t1 and t2 are
initialized to zero. o1 is initialized to an object of the class c1. We say this
object is an instance of class c1. An object is created using the new opera-
tion. This causes the class’s initialize method to be invoked, in this case
setting the object’s field i to 3 and its field j to -3. The program then calls
the getstate method of o1, returning the list (3 -3). Next, it calls o1’s
countup method, changing the value of the two fields to 5 and -5. Then the

328 9 Objects and Classes

class interior-node extends object
field left
field right
method initialize (l, r)
begin
set left = l;
set right = r

end
method sum () +(send left sum(),send right sum())

class leaf-node extends object
field value
method initialize (v) set value = v
method sum () value

let o1 = new interior-node(
new interior-node(
new leaf-node(3),
new leaf-node(4)),

new leaf-node(5))
in send o1 sum()

Figure 9.2 Object-oriented program for summing the leaves of a tree

getstate method is called again, returning the list (5 -5). Last, the value
of list(t1,t2), which is ((3 -3) (5 -5)), is returned as the value of
the entire program.

The program in figure 9.2 illustrates a key idea in object-oriented program-
ming: dynamic dispatch. In this program we have trees with two kinds of
nodes, interior-node and leaf-node. To find the sum of the leaves of
a node, we send it the sum message. Generally, we do not know what kind
of node we are sending the message to. Instead, each node accepts the sum
message and uses its sum method to do the right thing. This is called dynamic
dispatch. Here the expression builds a tree with two interior nodes and three
leaf nodes. It sends a sum message to the node o1; o1 sends sum messages
to its subtrees, and so on, returning 12 at the end. This program also shows
that all methods are mutually recursive.

A method body can invoke other methods of the same object by using the
identifier self (sometimes calledthis), which is always bound to the object
on which the method has been invoked. For example, in

9.2 Inheritance 329

class oddeven extends object
method initialize () 1
method even (n)
if zero?(n) then 1 else send self odd(-(n,1))
method odd (n)
if zero?(n) then 0 else send self even(-(n,1))

let o1 = new oddeven()
in send o1 odd(13)

the methods even and odd invoke each other recursively, because when they
are executed, self is bound to an object that contains them both. This is
much like the dynamic-binding implementation of recursion in exercise 3.37.

9.2 Inheritance

Inheritance allows the programmer to define new classes by incremental
modification of old ones. This is extremely useful in practice. For exam-
ple, a colored point is like a point, except that it has additional methods to
manipulate its color, as in the classic example in figure 9.3.

If class c2 extends class c1, we say that c1 is the parent or superclass of c2

or that c2 is a child of c1. Since inheritance defines c2 as an extension of c1,
c1 must be defined before c2. To get things started, the language includes a
predefined class called objectwith no methods or fields. Since object has
no initializemethod, it is impossible to create an object of class object.
Each class other than object has a single parent, but it may have many
children. Thus the relation extends imposes a tree structure on the set of
classes, with object at the root. Since each class has at most one immediate
superclass, this is a single-inheritance language. Some languages allow classes
to inherit from multiple superclasses. Such multiple inheritance is powerful,
but it is also problematic; we consider some of the difficulties in the exercises.

The genealogical analogy is the source of the term inheritance. The analogy
is often pursued so that we speak of the ancestors of a class (the chain from a
class’s parent to the root class object) or its descendants. If c2 is a descendant
of c1, we sometimes say that c2 is a subclass of c1, and write c2 < c1.

If class c2 inherits from class c1, all the fields and methods of c1 will be
visible from the methods of c2, unless they are redeclared in c2. Since a class
inherits all the methods and fields of its parent, an instance of a child class
can be used anywhere an instance of its parent can be used. Similarly, any
instance of any descendant of a class can be used anywhere an instance of
the class can be used. This is sometimes called subclass polymorphism. This is

330 9 Objects and Classes

class point extends object
field x
field y
method initialize (initx, inity)
begin
set x = initx;
set y = inity

end
method move (dx, dy)
begin
set x = +(x,dx);
set y = +(y,dy)

end
method get-location () list(x,y)

class colorpoint extends point
field color
method set-color (c) set color = c
method get-color () color

let p = new point(3,4)
cp = new colorpoint(10,20)

in begin
send p move(3,4);
send cp set-color(87);
send cp move(10,20);
list(send p get-location(), % returns (6 8)

send cp get-location(), % returns (20 40)
send cp get-color()) % returns 87

end

Figure 9.3 Classic example of inheritance: colorpoint

the design we have chosen for our language; other object-oriented languages
may have different visibility rules.

We next consider what happens when the fields or methods of a class are
redeclared. If a field of c1 is redeclared in one of its subclasses c2, the new dec-
laration shadows the old one, just as in lexical scoping. For example, consider
figure 9.4. An object of class c2 has two fields named y: the one declared in
c1 and the one declared in c2. The methods declared in c1 see c1’s fields x
and y. In c2, the x in getx2 refers to c1’s field x, but the y in gety2 refers
to c2’s field y.

9.2 Inheritance 331

class c1 extends object
field x
field y
method initialize () 1
method setx1 (v) set x = v
method sety1 (v) set y = v
method getx1 () x
method gety1 () y

class c2 extends c1
field y
method sety2 (v) set y = v
method getx2 () x
method gety2 () y

let o2 = new c2()
in begin

send o2 setx1(101);
send o2 sety1(102);
send o2 sety2(999);
list(send o2 getx1(), % returns 101

send o2 gety1(), % returns 102
send o2 getx2(), % returns 101
send o2 gety2()) % returns 999

end

Figure 9.4 Example of field shadowing

If a method m of a class c1 is redeclared in one of its subclasses c2, we
say that the new method overrides the old one. We call the class in which
a method is declared that method’s host class. Similarly, we define the host
class of an expression to be the host class of the method (if any) in which the
expression occurs. We also define the superclass of a method or expression
as the parent class of its host class.

If an object of class c2 is sent an m message, then the new method should
be used. This rule is simple, but it has subtle consequences. Consider the
following example:

332 9 Objects and Classes

class c1 extends object
method initialize () 1
method m1 () 11
method m2 () send self m1()

class c2 extends c1
method m1 () 22

let o1 = new c1() o2 = new c2()
in list(send o1 m1(), send o2 m1(), send o2 m2())

We expect send o1 m1() to return 11, since o1 is an instance of c1. Sim-
ilarly, we expect send o2 m1() to return 22, since o2 is an instance of c2.
Now what about send o2 m2()? Method m2 immediately calls method
m1, but which one?

Dynamic dispatch tells us that we should look at the class of the object
bound to self. The value of self is o2, which is of class c2. Hence the call
send self m1() should return 22.

Our language has one more important feature, super calls. Consider the
program in figure 9.5. There we have supplied the class colorpoint with
an overly specialized initialize method that sets the field color as well
as the fields x and y. However, the body of the new method duplicates the
code of the overridden one. This might be acceptable in our small example,
but in a large example this would clearly be bad practice. (Why?) Further-
more, if colorpoint declared a field x, there would be no way to initialize
the field x of point, just as there is no way to initialize the first y in the
example on page 331.

The solution is to replace the duplicated code in the body of colorpoint’s
initialize method with a super call of the form super initialize().
Then the initialize method in colorpoint would read

method initialize (initx, inity, initcolor)
begin
super initialize(initx, inity);
set color = initcolor

end

A super call super n(...) in the body of a method m invokes a method
n of the parent of m’s host class. This is not necessarily the parent of the class
of self. The class of self will always be a subclass of m’s host class, but it
may not be the same, because m might have been declared in an ancestor of
the target object.

9.2 Inheritance 333

class point extends object
field x
field y
method initialize (initx, inity)
begin
set x = initx;
set y = inity

end
method move (dx, dy)
begin
set x = +(x,dx);
set y = +(y,dy)

end
method get-location () list(x,y)

class colorpoint extends point
field color
method initialize (initx, inity, initcolor)
begin
set x = initx;
set y = inity;
set color = initcolor

end
method set-color (c) set color = c
method get-color () color

let o1 = new colorpoint(3,4,172)
in send o1 get-color()

Figure 9.5 Example demonstrating a need for super

To illustrate this distinction, consider figure 9.6. Sending an m3 mes-
sage to an object o3 of class c3 finds c2’s method for m3, which executes
super m1(). The class of o3 is c3, whose parent is c2. But the host class is
c2, and c2’s superclass is c1. So c1’s method for m1 is executed. This is an
example of static method dispatch. Though the object of a super method call is
self, method dispatch is static, because the specific method to be invoked
can be determined from the text, independent of the class of self.

In this example, c1’s method for m1 calls o3’s m2 method. This is an ordi-
nary method call, so dynamic dispatch is used, so it is c3’s m2 method that
is found, returning 33.

334 9 Objects and Classes

class c1 extends object
method initialize () 1
method m1 () send self m2()
method m2 () 13

class c2 extends c1
method m1 () 22
method m2 () 23
method m3 () super m1()

class c3 extends c2
method m1 () 32
method m2 () 33

let o3 = new c3()
in send o3 m3()

Figure 9.6 Example illustrating interaction of super call with self

9.3 The Language

For our language CLASSES, we extend the language IMPLICIT-REFS with
the additional productions shown in figure 9.7. A program is a sequence of
class declarations followed by an expression to be executed. A class decla-
ration has a name, an immediate superclass name, zero or more field decla-
rations, and zero or more method declarations. A method declaration, like a
procedure declaration in a letrec, has a name, a list of formal parameters,
and a body. We also extend the language with multiargument procedures,
multideclaration let, letrec expressions, and some additional operations
like addition and list. The operations on lists are as in exercise 3.9. Last, we
add a begin expression, as in exercise 4.4, that evaluates its subexpressions
from left to right and returns the value of the last one.

We add objects and lists as expressed values, so we have

ExpVal = Int+Bool+Proc+Listof(ExpVal) + Obj
DenVal = Ref(ExpVal)

We write Listof(ExpVal) to indicate that the lists may contain any expressed
value.

We will consider Obj in section 9.4.1. Classes are neither denotable nor
expressible in our language: they may appear as part of objects but nev-
er as the binding of a variable or the value of an expression, but see exer-
cise 9.29.

9.3 The Language 335

Program ::= {ClassDecl}∗ Expression
a-program (class-decls body)

ClassDecl ::= class Identifier extends Identifier
{field Identifier}∗ {MethodDecl}∗

a-class-decl

(class-name super-name
field-names method-decls)

MethodDecl ::= method Identifier ({Identifier}∗(,)) Expression
a-method-decl (method-name vars body)

Expression ::= new Identifier ({Expression}∗(,))

new-object-exp (class-name rands)

Expression ::= send Expression Identifier ({Expression}∗(,))

method-call-exp (obj-exp method-name rands)

Expression ::= super Identifier ({Expression}∗(,))

super-call-exp (method-name rands)

Expression ::= self

self-exp ()

Figure 9.7 New productions for a simple object-oriented programming language

We have included four additional expressions. The new expression creates
an object of the named class. The initialize method is then invoked to
initialize the fields of the object. The rands are evaluated and passed to
the initialize method. The value returned by this method call is thrown
away and the new object is returned as the value of the new expression.

A self expression returns the object on which the current method is oper-
ating.

A send expression consists of an expression that should evaluate to an
object, a method name, and zero or more operands. The named method
is retrieved from the class of the object, and then is passed the arguments
obtained by evaluating the operands. As in IMPLICIT-REFS, a new location
is allocated for each of these arguments, and then the method body is evalu-

336 9 Objects and Classes

ated within the scope of lexical bindings associating the method’s parameters
with the references to the corresponding locations.

A super-call expression consists of a method name and zero or more
arguments. It looks for a method of the given name, starting in the superclass
of the expression’s host class. The body of the method is then evaluated, with
the current object as self.

9.4 The Interpreter

When a program is evaluated, all the class declarations are processed using
initialize-class-env! and then the expression is evaluated. The pro-
cedure initialize-class-env! creates a global class environment that
maps each class name to the methods of the class. Because this environment
is global, we model it as a Scheme variable. We discuss the class environment
in more detail in section 9.4.3.

value-of-program : Program → ExpVal
(define value-of-program

(lambda (pgm)
(initialize-store!)
(cases program pgm

(a-program (class-decls body)
(initialize-class-env! class-decls)
(value-of body (init-env))))))

The procedure value-of contains, as usual, a clause for each kind of
expression in the language, including a clause for each of the four new pro-
ductions.

We consider each new kind of expression in turn.
Usually, an expression is evaluated because it is part of a method that is

operating on some object. In the environment, this object is bound to the
pseudo-variable %self. We call this a pseudo-variable because it is bound
lexically, like an ordinary variable, but it has somewhat different properties,
which we explore below. Similarly, the name of the superclass of the host
class of the current method is bound to the pseudo-variable %super.

When a self expression is evaluated, the value of %self is returned. The
clause in value-of is

(self-exp ()
(apply-env env ’%self))

9.4 The Interpreter 337

When a send expression is evaluated, the operands and the object expres-
sion are evaluated. We look in the object to find its class name. Then we find
the method using find-method, which takes a class name and a method
name and returns a method. That method is then applied to the current
object and the method arguments.

(method-call-exp (obj-exp method-name rands)
(let ((args (values-of-exps rands env))

(obj (value-of obj-exp env)))
(apply-method
(find-method

(object->class-name obj)
method-name)

obj
args)))

Super method invocation is similar to ordinary method invocation except
that the method is looked up in the superclass of the host class of the expres-
sion. The clause in value-of is

(super-call-exp (method-name rands)
(let ((args (values-of-exps rands env))

(obj (apply-env env ’%self)))
(apply-method
(find-method (apply-env env ’%super) method-name)
obj
args)))

Our last task is to create objects. When a new expression is evaluated,
the operands are evaluated and a new object is created from the class name.
Then its initialize method is called, but its value is ignored. Finally, the object
is returned.

(new-object-exp (class-name rands)
(let ((args (values-of-exps rands env))

(obj (new-object class-name)))
(apply-method
(find-method class-name ’initialize)
obj
args)

obj))

Next we determine how to represent objects, methods, and classes. To
illustrate the representation, we use a running example, shown in figure 9.8.

338 9 Objects and Classes

class c1 extends object
field x
field y
method initialize ()
begin
set x = 11;
set y = 12

end
method m1 () ... x ... y ...
method m2 () ... send self m3() ...

class c2 extends c1
field y
method initialize ()
begin
super initialize();
set y = 22

end
method m1 (u,v) ... x ... y ...
method m3 () ...

class c3 extends c2
field x
field z
method initialize ()
begin
super initialize();
set x = 31;
set z = 32

end
method m3 () ... x ... y ... z ...

let o3 = new c3()
in send o3 m1(7,8)

Figure 9.8 Sample program for OOP implementation

9.4 The Interpreter 339

an-object c3

Figure 9.9 A simple object

9.4.1 Objects

We represent an object as a data type containing the object’s class name and
a list of references to its fields.

(define-datatype object object?
(an-object

(class-name identifier?)
(fields (list-of reference?))))

We lay out the list with the fields from the “oldest” class first. Thus in
figure 9.8, an object of class c1 would have its fields laid out as (x y); an
object of class c2 would lay out its fields as (x y y), with the second y
being the one belonging to c2, and an object of class c3 would be laid out as
(x y y x z). The representation of object o3 from figure 9.8 is shown in
figure 9.9. Of course, we want the methods in class c3 to refer to the field x
declared in c3, not the one declared in c1. We take care of this when we set
up the environment for evaluation of the method body.

This strategy has the useful property that any subclass of c3 will have
these fields in the same positions in the list, because any fields added later
will appear to the right of these fields. What is the position of x in a method
that is defined in any subclass of c3? Assuming that x is not redefined, we
know that the position of x must be 3 throughout all such methods. Thus,
when a field variable is declared, the position of the corresponding value
remains unchanged. This property allows field references to be determined
statically, similarly to the way we handled variables in section 3.6.

Making a new object is easy. We simply create an an-object with a list
of new references equal to the number of fields in the object. To determine
that number, we get the list of field variables from the object’s class. We
initialize each location with an illegal value that will be recognizable in case
the program dereferences the location without initializing it.

340 9 Objects and Classes

ClassName = Sym

new-object : ClassName → Obj
(define new-object

(lambda (class-name)
(an-object

class-name
(map

(lambda (field-name)
(newref (list ’uninitialized-field field-name)))

(class->field-names (lookup-class class-name))))))

9.4.2 Methods

We next turn to methods. Methods are like procedures, except that they do
not have a saved environment. Instead, they keep track of the names of the
fields to which they refer. When a method is applied, it runs its body in an
environment in which

• The method’s formal parameters are bound to new references that are ini-
tialized to the values of the arguments. This is analogous to the behavior
of apply-procedure in IMPLICIT-REFS.

• The pseudo-variables %self and %super are bound to the current object
and the method’s superclass, respectively.

• The visible field names are bound to the fields of the current object. To
implement this, we define

(define-datatype method method?
(a-method
(vars (list-of identifier?))
(body expression?)
(super-name identifier?)
(field-names (list-of identifier?))))

9.4 The Interpreter 341

apply-method : Method × Obj × Listof(ExpVal) → ExpVal
(define apply-method

(lambda (m self args)
(cases method m
(a-method (vars body super-name field-names)

(value-of body
(extend-env* vars (map newref args)
(extend-env-with-self-and-super

self super-name
(extend-env field-names (object->fields self)

(empty-env)))))))))

Here we use extend-env* from exercise 2.10, which extends an envi-
ronment by binding a list of variables to a list of denoted values. We have
also added to our environment interface the procedureextend-env-with-
self-and-super, which binds %self and %super to an object and a class
name, respectively.

In order to make sure that each method sees the right fields, we need to
be careful when constructing the field-names list. Each method should
see only the last declaration of a field; all the others should be shadowed. So
when we construct the field-names list, we will replace all but the right-
most occurrence of each name with a fresh identifier. For the program of
figure 9.8, the resulting field-names fields look like

Class Fields Defined Fields field-names
c1 x, y (x y) (x y)
c2 y (x y y) (x y%1 y)
c3 x, z (x y y x z) (x%1 y%1 y x z)

Since the method bodies do not know anything about x%1 or y%1, they can
only see the rightmost field for each field variable, as desired.

Figure 9.10 shows the environment built for the evaluation of the method
body in send o3 m1(7,8) in figure 9.8. This figure shows that the list of
references may be longer than the list of variables: the list of variables is just
(x y%1 y), since those are the only field variables visible from method m1
in c2, but the value of (object->fields self) is the list of all the fields
of the object. However, since the values of the three visible field variables
are in the first three elements of the list, and since we have renamed the first
y to be y%1 (which the method knows nothing about) the method m1 will
associate the variable y with the y declared in c2, as desired.

342 9 Objects and Classes

(u v)

()

(%self %super)

an-object c3)(c1

(x y%1 y)

Figure 9.10 Environment for method application

When the host class and the class of self are the same, the list of vari-
ables is generally of the same length as the list of field locations. If the host
class is higher up the class chain, then there may be more locations than field
variables, but the values corresponding to the field variables will be at the
beginning of the list, and the extra values will be inaccessible.

9.4.3 Classes and Class Environments

Our implementation so far has depended on the ability to get information
about a class from its name. So we need a class environment to accomplish
this task. The class environment will associate each class name with a data
structure that describes the class.

The class environment is global: in our language, class declarations are
grouped at the beginning of the program and are in force for the entire pro-
gram. So, we represent the class environment as a global variable named
the-class-env, which will contain a list of (class-name, class) lists, but we
hide this representation behind the procedures add-to-class-env! and
lookup-class.

9.4 The Interpreter 343

ClassEnv = Listof(List(ClassName, Class))

the-class-env : ClassEnv
(define the-class-env ’())

add-to-class-env! : ClassName × Class → Unspecified
(define add-to-class-env!

(lambda (class-name class)
(set! the-class-env
(cons

(list class-name class)
the-class-env))))

lookup-class : ClassName → Class
(define lookup-class

(lambda (name)
(let ((maybe-pair (assq name the-class-env)))
(if maybe-pair (cadr maybe-pair)

(report-unknown-class name)))))

For each class, we need to keep track of three things: the name of its super-
class, the list of its field variables, and an environment mapping its method
names to its methods.

(define-datatype class class?
(a-class

(super-name (maybe identifier?))
(field-names (list-of identifier?))
(method-env method-environment?)))

Here we use the predicate (maybe identifier?) which is satisfied by
any value that is either a symbol or is #f. The latter possibility is necessary
for the class object, which has no superclass. The field-names will be
the fields of the class, as seen by methods of that class, and methods will be
an environment giving a definition to each method name that is defined for
the class.

We will initialize the class environment with an entry for the class object.
For each declaration, we add a new binding to the class environment, bind-
ing the name of the class to a class consisting of the name of the super-
class, the field-names for the methods of that class, and the environment
of methods for that class.

344 9 Objects and Classes

initialize-class-env! : Listof(ClassDecl) → Unspecified
(define initialize-class-env!

(lambda (c-decls)
(set! the-class-env

(list
(list ’object (a-class #f ’() ’()))))

(for-each initialize-class-decl! c-decls)))

initialize-class-decl! : ClassDecl → Unspecified
(define initialize-class-decl!

(lambda (c-decl)
(cases class-decl c-decl

(a-class-decl (c-name s-name f-names m-decls)
(let ((f-names

(append-field-names
(class->field-names (lookup-class s-name))
f-names)))

(add-to-class-env!
c-name
(a-class s-name f-names

(merge-method-envs
(class->method-env (lookup-class s-name))
(method-decls->method-env

m-decls s-name f-names)))))))))

The procedureappend-field-names is used to create the field-names
for the current class. It appends the fields of the superclass and the fields
declared by the new class, except that any field of the superclass that is shad-
owed by a new field is replaced by a fresh identifier, as in the example on
page 341.

append-field-names :
Listof(FieldName) × Listof(FieldName) → Listof(FieldName)

(define append-field-names
(lambda (super-fields new-fields)
(cond

((null? super-fields) new-fields)
(else
(cons

(if (memq (car super-fields) new-fields)
(fresh-identifier (car super-fields))
(car super-fields))

(append-field-names
(cdr super-fields) new-fields))))))

9.4 The Interpreter 345

9.4.4 Method Environments

All that’s left to do is to write find-method and merge-method-envs.
As we did for classes, we represent a method environment by a list of

(method-name, method) lists. We look up a method using find-method.

MethodEnv = Listof(List(MethodName, Method))

find-method : Sym × Sym → Method
(define find-method

(lambda (c-name name)
(let ((m-env (class->method-env (lookup-class c-name))))
(let ((maybe-pair (assq name m-env)))

(if (pair? maybe-pair) (cadr maybe-pair)
(report-method-not-found name))))))

With this information we can write method-decls->method-env. It
takes the method declarations of a class and creates a method environment,
recording for each method its bound variables, its body, the name of the
superclass of the host class, and the field-names of the host class.

method-decls->method-env :
Listof(MethodDecl) × ClassName × Listof(FieldName) → MethodEnv

(define method-decls->method-env
(lambda (m-decls super-name field-names)

(map
(lambda (m-decl)

(cases method-decl m-decl
(a-method-decl (method-name vars body)
(list method-name

(a-method vars body super-name field-names)))))
m-decls)))

Last, we write merge-method-envs. Since methods in the new class
override those of the old class, we can simply append the environments,
with the new methods first.

merge-method-envs : MethodEnv × MethodEnv → MethodEnv
(define merge-method-envs

(lambda (super-m-env new-m-env)
(append new-m-env super-m-env)))

There are ways of building method environments that will be more efficient
for method lookup (exercise 9.18).

346 9 Objects and Classes

((c3

#(struct:a-class c2 (x%2 y%1 y x z)

((initialize #(struct:a-method ()

#(struct:begin-exp ...) c2 (x%2 y%1 y x z)))

(m3 #(struct:a-method ()

#(struct:diff-exp ...)) c2 (x%2 y%1 y x z))

(initialize #(struct:a-method ...))

(m1 #(struct:a-method (u v)

#(struct:diff-exp ...) c1 (x y%1 y)))

(m3 #(struct:a-method ...))

(initialize #(struct:a-method ...))

(m1 #(struct:a-method ...))
(m2 #(struct:a-method ()

#(struct:method-call-exp #(struct:self-exp) m3 ())

object (x y))))))

(c2

#(struct:a-class c1 (x y%1 y)

((initialize #(struct:a-method ()

#(struct:begin-exp ...) c1 (x y%1 y)))

(m1 #(struct:a-method (u v)

#(struct:diff-exp ...) c1 (x y%1 y)))

(m3 #(struct:a-method ()

#(struct:const-exp 23) c1 (x y%1 y)))

(initialize #(struct:a-method ...))

(m1 #(struct:a-method ...))

(m2 #(struct:a-method ()

#(struct:method-call-exp #(struct:self-exp) m3 ())
object (x y))))))

(c1

#(struct:a-class object (x y)

((initialize #(struct:a-method ()

#(struct:begin-exp ...) object (x y)))

(m1 #(struct:a-method ()

#(struct:diff-exp ...) object (x y)))

(m2 #(struct:a-method ()

#(struct:method-call-exp #(struct:self-exp) m3 ())

object (x y))))))

(object

#(struct:a-class #f () ())))

Figure 9.11 The class environment for figure 9.8

9.4 The Interpreter 347

9.4.5 Exercises

Exercise 9.1 [�] Implement the following using the language of this section:

1. A queue class with methods empty?, enqueue, and dequeue.

2. Extend the queue class with a counter that counts the number of operations that
have been performed on the current queue.

3. Extend the queue class with a counter that counts the total number of operations
that have been performed on all the queues in the class. As a hint, remember that
you can pass a shared counter object at initialization time.

Exercise 9.2 [�] Inheritance can be dangerous, because a child class can arbitrarily
change the behavior of a method by overriding it. Define a class bogus-oddeven
that inherits from oddeven and overrides the method even so that let o1 = new
bogus-oddeven() in send o1 odd (13) gives the wrong answer.

Exercise 9.3 [� �] In figure 9.11, where are method environments shared? Where are
the field-names lists shared?

Exercise 9.4 [�] Change the representation of objects so that an Obj contains the class
of which the object is an instance, rather than its name. What are the advantages and
disadvantages of this representation compared to the one in the text?

Exercise 9.5 [�] The interpreter of section 9.4 stores the superclass name of a method’s
host class in the lexical environment. Change the implementation so that the method
stores the host class name, and retrieves the superclass name from the host name.

Exercise 9.6 [�] Add to our language the expression instanceof exp class-name.
The value of this expression should be true if and only if the object obtained by eval-
uating exp is an instance of class-name or of one of its subclasses.

Exercise 9.7 [�] In our language, the environment for a method includes bindings for
the field variables declared in the host class and its superclasses. Limit them to just
the host class.

Exercise 9.8 [�] Add to our language a new expression,

fieldref obj field-name

that retrieves the contents of the given field of the object. Add also

fieldset obj field-name = exp

which sets the given field to the value of exp.

Exercise 9.9 [�] Add expressions superfieldref field-name and superfieldset
field-name = exp that manipulate the fields of self that would otherwise be shad-
owed. Remember super is static, and always refers to the superclass of the host
class.

348 9 Objects and Classes

Exercise 9.10 [� �] Some object-oriented languages include facilities for named-class
method invocation and field references. In a named-class method invocation, one
might write named-send c1 o m1(). This would invoke c1’s m1 method on o,
so long as o was an instance of c1 or of one of its subclasses, even if m1 were over-
ridden in o’s actual class. This is a form of static method dispatch. Named-class
field reference provides a similar facility for field reference. Add named-class method
invocation, field reference, and field setting to the language of this section.

Exercise 9.11 [� �] Add to CLASSES the ability to specify that each method is either
private and only accessible from within the host class, protected and only accessible
from the host class and its descendants, or public and accessible from anywhere. Many
object-oriented languages include some version of this feature.

Exercise 9.12 [� �] Add to CLASSES the ability to specify that each field is either pri-
vate, protected, or public as in exercise 9.11.

Exercise 9.13 [� �] To defend against malicious subclasses like bogus-oddeven in
exercise 9.2, many object-oriented languages have a facility for final methods, which
may not be overridden. Add such a facility to CLASSES, so that we could write

class oddeven extends object
method initialize () 1
final method even (n)
if zero?(n) then 1 else send self odd(-(n,1))

final method odd (n)
if zero?(n) then 0 else send self even(-(n,1))

Exercise 9.14 [� �] Another way to defend against malicious subclasses is to use some
form of static dispatch. Modify CLASSES so that method calls to self always use the
method in the host class, rather than the method in the class of the target object.

Exercise 9.15 [� �] Many object-oriented languages include a provision for static or
class variables. Static variables associate some state with a class; all the instances of
the class share this state. For example, one might write:

class c1 extends object
static next-serial-number = 1
field my-serial-number
method get-serial-number () my-serial-number
method initialize ()
begin
set my-serial-number = next-serial-number;
set next-serial-number = +(next-serial-number,1)

end
let o1 = new c1()

o2 = new c1()
in list(send o1 get-serial-number(),

send o2 get-serial-number())

9.4 The Interpreter 349

Each new object of class c1 receives a new consecutive serial number.

Add static variables to our language. Since static variables can appear in a method
body, apply-methodmust add additional bindings in the environment it constructs.
What environment should be used for the evaluation of the initializing expression for
a static variable (1 in the example above)?

Exercise 9.16 [� �] Object-oriented languages frequently allow overloading of meth-
ods. This feature allows a class to have multiple methods of the same name, provided
they have distinct signatures. A method’s signature is typically the method name plus
the types of its parameters. Since we do not have types in CLASSES, we might over-
load based simply on the method name and number of parameters. For example, a
class might have two initialize methods, one with no parameters for use when
initialization with a default field value is desired, and another with one parameter
for use when a particular field value is desired. Extend our interpreter to allow over-
loading based on the number of method parameters.

Exercise 9.17 [� �] As it stands, the classes in our language are defined globally. Add
to CLASSES a facility for local classes, so one can write something like letclass c
= ...in e. As a hint, consider adding the class environment as a parameter to the
interpreter.

Exercise 9.18 [� �] The method environments produced by merge-method-envs
can be long. Write a new version of merge-method-envs with the property that
each method name occurs exactly once, and furthermore, it appears in the same place
as its earliest declaration. For example, in figure 9.8, method m2 should appear in the
same place in the method environments of c1, c2, c3, and any descendant of c3.

Exercise 9.19 [� �] Implement lexical addressing for CLASSES. First, write a lexical-
address calculator like that of section 3.7.1 for the language of this section. Then
modify the implementation of environments to make them nameless, and modify
value-of so that apply-env takes a lexical address instead of a symbol, as in sec-
tion 3.7.2.

Exercise 9.20 [� � �] Can anything equivalent to the optimizations of the exercise 9.19
be done for method invocations? Discuss why or why not.

Exercise 9.21 [� �] If there are many methods in a class, linear search down a list of
methods can be slow. Replace it by some faster implementation. How much improve-
ment does your implementation provide? Account for your results, either positive or
negative.

Exercise 9.22 [� �] In exercise 9.16, we added overloading to the language by extend-
ing the interpreter. Another way to support overloading is not to modify the inter-
preter, but to use a syntactic preprocessor. Write a preprocessor that changes the name
of every method m to one of the form m:@n, where n is the number of parameters in
the method declaration. It must similarly change the name in every method call,
based on the number of operands. We assume that :@ is not used by programmers in
method names, but is accepted by the interpreter in method names. Compilers fre-
quently use such a technique to implement method overloading. This is an instance
of a general trick called name mangling.

350 9 Objects and Classes

Exercise 9.23 [� � �] We have treated super calls as if they were lexically bound. But
we can do better: we can determine super calls statically. Since a super call refers to
a method in a class’s parent, and the parent, along with its methods, is known prior
to the start of execution, we can determine the exact method to which any super call
refers at the same time we do lexical-addressing and other analyses. Write a translator
that takes each super call and replaces it with an abstract syntax tree node containing
the actual method to be invoked.

Exercise 9.24 [� � �] Write a translator that replaces method names in named method
calls as in exercise 9.10 with numbers indicating the offset of the named method in the
run-time method table of the named class. Implement an interpreter for the translated
code in which named method access is constant time.

Exercise 9.25 [� � �] Using the first example of inheritance from figure 9.5, we include
a method in the class point that determines if two points have the same x- and y-
coordinates. We add the method similarpoints to the point class as follows:

method similarpoints (pt)
if equal?(send pt getx(), x)
then equal?(send pt gety(), y)
else zero?(1)

This works for both kinds of points. Since getx, gety, and similarpoints are
defined in class point, by inheritance, they are defined in colorpoint. Test
similarpoints to compare points with points, points with color points, color
points with points, and color points with color points.

Next consider a small extension. We add a new similarpoints method to the
colorpoint class. We expect it to return true if both points have the same x- and
y-coordinates and further, in case both are color points, they have the same color.
Otherwise it returns false. Here is an incorrect solution.

method similarpoints (pt)
if super similarpoints(pt)
then equal?(send pt getcolor(),color)
else zero?(1)

Test this extension. Determine why it does not work on all the cases. Fix it so that all
the tests return the correct values.

The difficulty of writing a procedure that relies on more than one object is known
as the binary method problem. It demonstrates that the class-centric model of object-
oriented programming, which this chapter explores, leaves something to be desired
when there are multiple objects. It is called the binary method problem because the
problem shows up with just two objects, but it gets progressively worse as the number
of objects increases.

Exercise 9.26 [� � �] Multiple inheritance, in which a class can have more than one
parent, can be useful, but may introduce serious complications. What if two inherited
classes both have methods of the same name? This can be disallowed, or resolved by

9.4 The Interpreter 351

enumerating the methods in the class by some arbitrary rule, such as depth-first left-
to-right, or by requiring that the ambiguity be resolved at the point such a method
is called. The situation for fields is even worse. Consider the following situation, in
which class c4 is to inherit from c2 and c3, both of which inherit from c1:

class c1 extends object
field x

class c2 extends c1
class c3 extends c1
class c4 extends c2, c3

Does an instance of c4 have one instance of field x shared by c2 and c3, or does c4
have two x fields: one inherited from c2 and one inherited from c3? Some languages
opt for sharing, some not, and some provide a choice, at least in some cases. The
complexity of this problem has led to a design trend favoring single inheritance of
classes, but multiple inheritance only for interfaces (section 9.5), which avoids most
of these difficulties.

Add multiple inheritance to CLASSES. Extend the syntax as necessary. Indicate what
issues arise when resolving method and field name conflicts. Characterize the sharing
issue and its resolution.

Exercise 9.27 [� � �] Implement the following design for an object language without
classes. An object will be a set of closures, indexed by method names, that share
an environment (and hence some state). Classes will be replaced by procedures that
return an object. So instead of writing send o1 m1(11,22,33), we would write an
ordinary procedure call (getmethod(o1,m1) 11 22 33), and instead of writing

class oddeven extends object
method initialize () 1
method even (n)
if zero?(n) then 1 else send self odd(-(n,1))
method odd (n)
if zero?(n) then 0 else send self even(-(n,1))

let o1 = new oddeven()
in send o1 odd(13)

we might write something like

let make-oddeven
= proc ()

newobject
even = proc (n) if zero?(n) then 1

else (getmethod(self,odd) -(n,1))
odd = proc (n) if zero?(n) then 0

else (getmethod(self,even) -(n,1))
endnewobject

in let o1 = (make-oddeven) in (getmethod(o1,odd) 13)

352 9 Objects and Classes

Exercise 9.28 [� � �] Add inheritance to the language of exercise 9.27.

Exercise 9.29 [� � �] Design and implement an object-oriented language without
explicit classes, by having each object contain its own method environment. Such
an object is called a prototype. Replace the class object by a prototype object with no
methods or fields. Extend a class by adding methods and fields to its prototype, yield-
ing a new prototype. Thus we might write let c2 = extend c1 ... instead of
class c2 extends c1 Replace the new operation with an operation clone
that takes an object and simply copies its methods and fields. Methods in this lan-
guage occur inside a lexical scope, so they should have access to lexically visible vari-
ables, as usual, as well as field variables. What shadowing relation should hold when
a field variable of a superprototype has the same name as a variable in a containing
lexical scope?

9.5 A Typed Language

In chapter 7, we showed how a type system could inspect a program to guar-
antee that it would never execute an inappropriate operation. No program
that passes the checker will ever attempt to apply a nonprocedure to an argu-
ment, or to apply a procedure or other operator to the wrong number of
arguments or to an argument of the wrong type.

In this section, we apply this technology to an object-oriented language
that we call TYPED-OO. This language has all the safety properties listed
above, and in addition, no program that passes our checker will ever send
a message to an object for which there is no corresponding method, or send
a message to an object with the wrong number of arguments or with argu-
ments of the wrong type.

A sample program in TYPED-OO language is shown in figure 9.12. This
program defines a class tree, which has a sum method that finds the sum of
the values in the leaves, as in figure 9.2, and an equal method, which takes
another tree and recursively descends through the trees to determine if they
are equal.

The major new features of the language are:

• Fields and methods are specified with their types, using a syntax similar
to that used in chapter 7.

• The concept of an interface is introduced in an object-oriented setting.

• The concept of subtype polymorphism is added to the language.

• The concept of casting is introduced, and the instanceof test from exer-
cise 9.6 is incorporated into the language.

We consider each of these items in turn.

9.5 A Typed Language 353

The new productions for TYPED-OO are shown in figure 9.13. We add a
void type as the type of a set operation, and list types as in exercise 7.9; as
in exercise 7.9 we require that calls to list have at least one argument. We
add identifiers to the set of type expressions, but for this chapter, an identi-
fier used as a type is associated with the class or interface of the same name.
We consider this correspondence in more detail below. Methods require their
result type to be specified, along with the types of their arguments, using a
syntax similar to that used for letrec in chapter 7. Last, two new expres-
sions are added, cast and instanceof.

In order to understand the new features of this language, we must define
the types of the language, as we did in definition 7.1.1.

Definition 9.5.1 The property of an expressed value v being of type t is defined as
follows:

• If c is a class, then a value is of type c if and only if it is an object, and it is an
instance of the class c or one of its descendants.

• If I is an interface, then a value is of type I if and only if it is an object that is an
instance of a class that implements I. A class implements I if and only if it has
an implements I declaration or if one of its ancestors implements I.

• If t is some other type, then the rules of definition 7.1.1 apply.

An object is an instance of exactly one class, but it can have many types.

• It has the type of the class that created it.

• It has the type of that class’s superclass and of all classes above it in the
inheritance hierarchy. In particular, every object has type object.

• It has the type of any interfaces that its creating class implements.

The second property is called subclass polymorphism. The third property
could be called interface polymorphism.

An interface represents the set of all objects that implement a particular set
of methods, regardless of how those objects were constructed. Our typing
system will allow a class c to declare that it implements interface I only if
c provides all the methods, with all the right types, that are required by I.
A class may implement several different interfaces, although we have only
used one in our example.

354 9 Objects and Classes

interface tree
method int sum ()
method bool equal (t : tree)

class interior-node extends object implements tree
field tree left
field tree right
method void initialize(l : tree, r : tree)
begin
set left = l; set right = r

end
method tree getleft () left
method tree getright () right
method int sum () +(send left sum(), send right sum())
method bool equal (t : tree)
if instanceof t interior-node
then if send left equal(send

cast t interior-node
getleft())

then send right equal(send
cast t interior-node
getright())

else zero?(1)
else zero?(1)

class leaf-node extends object implements tree
field int value
method void initialize (v : int) set value = v
method int sum () value
method int getvalue () value
method bool equal (t : tree)
if instanceof t leaf-node
then zero?(-(value, send cast t leaf-node getvalue()))
else zero?(1)

let o1 = new interior-node (
new interior-node (
new leaf-node(3),
new leaf-node(4)),

new leaf-node(5))
in list(send o1 sum(),

if send o1 equal(o1) then 100 else 200)

Figure 9.12 A sample program in TYPED-OO

9.5 A Typed Language 355

ClassDecl ::= class Identifier extends Identifier
{implements Identifier}∗

{field Type Identifier}∗

{MethodDecl}∗

a-class-decl (c-name s-name i-names

f-types f-names m-decls)

ClassDecl ::= interface Identifier {AbstractMethodDecl}∗

an-interface-decl (i-name abs-m-decls)

MethodDecl ::= method Type Identifier ({Identifier : Type}∗(,)) Expression

a-method-decl

(res-type m-name vars var-types body)

AbstractMethodDecl ::= method Type Identifier ({Identifier :Type}∗(,))

an-abstract-method-decl

(result-type m-name m-var-types m-vars)

Expression ::= cast Expression Identifier
cast-exp (exp c-name)

Expression ::= instanceof Expression Identifier
instanceof-exp (exp name)

Type ::= void

void-type ()

Type ::= Identifier
class-type (class-name)

Type ::= listof Type
list-type (type1)

Figure 9.13 New productions for TYPED-OO

356 9 Objects and Classes

In figure 9.12, the classes interior-node and leaf-node both imple-
ment the interface tree. The typechecker allows this, because they both
implement the sum and equal methods that are required for tree.

The expression instanceof e c returns a true value whenever the object
obtained by evaluating e is an instance of the class c or of one of its descen-
dants. Casting complements instanceof. The value of a cast expression
cast e c is the same as the value of e if that value is an object that is an
instance of the class c or one of its descendants. Otherwise the cast expres-
sion reports an error. The type of cast e c will always be c, since its value,
if it returns, is guaranteed to be of type c.

For example, our sample program includes the method

method bool equal(t : tree)
if instanceof t interior-node
then if send left

equal(send cast t interior-node getleft())
then send right

equal(send cast t interior-node getright())
else false

else false

The expression cast t interior-node checks to see if the value of t is an
instance of interior-node (or one of its descendants, if interior-node
had descendants). If it is, the value of t is returned; otherwise, an error is
reported. An instanceof expression returns a true value if and only if
the corresponding cast would succeed. Hence in this example the cast is
guaranteed to succeed, since it is guarded by the instanceof. The cast,
in turn, guards the use of send ... getleft(). The cast expression is
guaranteed to return a value of class interior-node, and therefore it will
be safe to send this value a getleft message.

For our implementation, we begin with the interpreter of section 9.4.1.
We add two new clauses to value-of to evaluate instanceof and cast
expressions:

(cast-exp (exp c-name)
(let ((obj (value-of exp env)))
(if (is-subclass? (object->class-name obj) c-name)

obj
(report-cast-error c-name obj))))

(instanceof-exp (exp c-name)
(let ((obj (value-of exp env)))
(if (is-subclass? (object->class-name obj) c-name)

(bool-val #t)
(bool-val #f))))

9.5 A Typed Language 357

The procedure is-subclass? traces the parent link of the first class
structure until it either finds the second one or stops when the parent link is
#f. Since interfaces are only used as types, they are ignored in this process.

is-subclass? : ClassName × ClassName → Bool
(define is-subclass?

(lambda (c-name1 c-name2)
(cond
((eqv? c-name1 c-name2) #t)
(else

(let ((s-name (class->super-name
(lookup-class c-name1))))

(if s-name (is-subclass? s-name c-name2) #f))))))

This completes the modification of the interpreter for the language of this
section.

Exercise 9.30 [�] Create an interface summable:

interface summable
method int sum ()

Now define classes for summable lists, summable binary trees (as in figure 9.12) and
summable general trees (in which each node contains a summable list of children).

Then do the same thing for an interface

interface stringable
method string to-string ()

Exercise 9.31 [�] In figure 9.12, would it have worked to make tree a class and have
the two node classes inherit from tree? In what circumstances is this a better method
than using an interface like summable? In what circumstances is it inferior?

Exercise 9.32 [� �] Write an equality predicate for the class tree that does not use
instanceof or cast. What is needed here is a double dispatch, in place of the single
dispatch provided by the usual methods. This can be simulated as follows: Instead of
using instanceof to find the class of the argument t, the current tree should send
back to t a message that encodes its own class, along with parameters containing the
values of the appropriate fields.

358 9 Objects and Classes

9.6 The Type Checker

We now turn to the checker for this language. The goal of the checker is to
guarantee a set of safety properties. For our language, these properties are
those of the underlying procedural language, plus the following properties
of the object-oriented portion of the language: no program that passes our
type checker will ever

• send a message to a non-object,

• send a message to an object for which there is no corresponding method,

• send a message to an object with the wrong number of arguments or with
arguments of the wrong type.

We make no attempt to verify that the initialize methods actually ini-
tialize all the fields, so it will still be possible for a program to reference an
uninitialized field. Similarly, because it is in general impossible to predict
the type of an initializemethod, our checker will not prevent the explicit
invocation of an initializemethod with the wrong number of arguments
or arguments of the wrong type, but the implicit invocation of initialize
by new will always be correct.

The checker begins with the implementation of type-of-program. Since
all the methods of all the classes are mutually recursive, we proceed much as
we do for letrec. For a letrec, we first built tenv-for-letrec-body
by collecting the declared type of the procedure (figure 7.3). We then checked
each procedure body against its declared result type. Finally, we checked the
body of the letrec in tenv-for-letrec-body.

Here, we first call initialize-static-class-env!, which walks
through the class declarations, collecting all the types into a static class envi-
ronment. Since this environment is global and never changes, we keep it in
a Scheme variable rather than passing it as a parameter. Then we check each
class declaration, using check-class-decl!. Finally, we find the type of
the body of the program.

type-of-program : Program → Type
(define type-of-program

(lambda (pgm)
(cases program pgm

(a-program (class-decls exp1)
(initialize-static-class-env! class-decls)
(for-each check-class-decl! class-decls)
(type-of exp1 (init-tenv))))))

9.6 The Type Checker 359

The static class environment will map each class name to a static class con-
taining the name of its parent, the names and types of its fields, and the
names and types of its methods. In our language, interfaces have no parent
and no fields, so they will be represented by a data structure containing only
the names and types of its required methods (but see exercise 9.36).

(define-datatype static-class static-class?
(a-static-class

(super-name (maybe identifier?))
(interface-names (list-of identifier?))
(field-names (list-of identifier?))
(field-types (list-of type?))
(method-tenv method-tenv?))

(an-interface
(method-tenv method-tenv?)))

Before considering how the static class environment is built, we consider
how to extend type-of to check the types of the six kinds of object-oriented
expressions: self, instanceof, cast, method calls, super calls, and new.

For a self expression, we look up the type of self using the pseudo-
variable %self, which we will be sure to bind to the type of the current
host class, just as in the interpreter we bound it to the current host object.

If an instanceof expression returns, it always returns a bool. The
expression cast e c returns the value of e provided that the value is an
object that is an instance of c or one of its descendants. Hence, if cast e c
returns a value, then that value is of type c. So we can always assign
cast e c the type c. For both instanceof and cast expressions, the inter-
preter evaluates the argument and runs object->class-name on it, so we
we must of course check that the operand is well-typed and returns a value
that is an object. The code for these three cases is shown in figure 9.14.

We next consider method calls. We now have three different kinds of calls
in our language: procedure calls, method calls, and super calls. We abstract
the process of checking these into a single procedure.

360 9 Objects and Classes

(self-exp ()
(apply-tenv tenv ’%self))

(instanceof-exp (exp class-name)
(let ((obj-type (type-of exp tenv)))

(if (class-type? obj-type)
(bool-type)
(report-bad-type-to-instanceof obj-type exp))))

(cast-exp (exp class-name)
(let ((obj-type (type-of exp tenv)))

(if (class-type? obj-type)
(class-type class-name)
(report-bad-type-to-cast obj-type exp))))

Figure 9.14 type-of clauses for object-oriented expressions, part 1

type-of-call : Type × Listof(Type) × Listof(Exp) → Type
(define type-of-call

(lambda (rator-type rand-types rands exp)
(cases type rator-type

(proc-type (arg-types result-type)
(if (not (= (length arg-types) (length rand-types)))
(report-wrong-number-of-arguments

(map type-to-external-form arg-types)
(map type-to-external-form rand-types)
exp))

(for-each check-is-subtype! rand-types arg-types rands)
result-type)

(else
(report-rator-not-of-proc-type
(type-to-external-form rator-type)
exp)))))

This procedure is equivalent to the line for call-exp in CHECKED (fig-
ure 7.2) with two notable additions. First, because our procedures now take
multiple arguments, we check to see that the call has the right number of
arguments, and in the for-each line we check the type of each operand
against the type of the corresponding argument in the procedure’s type. Sec-
ond, and more interestingly, we have replaced check-equal-type! of fig-
ure 7.2 by check-is-subtype!.

9.6 The Type Checker 361

Figure 9.15 Subtyping a procedure type

Why is this necessary? The principle of subclass polymorphism says
that if class c2 extends c1, then an object of class c2 can be used in any
context in which an object of class c1 can appear. If we wrote a proce-
dure proc (o : c1) ..., that procedure should be able to take an actual
parameter of type c2.

In general, we can extend the notion of subclass polymorphism to subtype
polymorphism, as we did with <: in chapter 8. We say that t1 is a subtype of
t2 if and only if

• t1 and t2 are classes, and t1 is a subclass of t2, or

• t1 is a class and t2 is an interface, and t1 or one of its superclasses imple-
ments t2, or

• t1 and t2 are procedure types, and the argument types of t2 are subtypes
of the argument types of t1, and the result type of t1 is a subtype of t2.

To understand the last rule, let t1 be (c1 -> d1), let t2 be (c2 -> d2),
with c2 < c1 and d1 < d2. Let f be a procedure of type t1. We claim that f
also has type t2. Why? Imagine that we give f an argument of type c2. Since
c2 < c1, the argument is also a c1. Therefore it is an acceptable argument
to f. f then returns a value of type d1. But since d1 < d2, this result is also
of type d2. So, if f is given an argument of type c2, it returns a value of type
d2. Hence f has type (c2 -> d2). We say that subtyping is covariant in the
result type and contravariant in the argument type. See figure 9.15. This is
similar to the definition of <:-iface in section 8.3.2.

362 9 Objects and Classes

The code for this is shown in figure 9.16. The code uses every2?, an exten-
sion of the procedure every? from exercise 1.24 that takes a two-argument
predicate and two lists, and returns #t if the lists are of the same length and
corresponding elements satisfy the predicate, or returns #f otherwise.

We can now consider each of the three kinds of calls (figure 9.17). For a
method call, we first find the types of the target object and of the operands,
as usual. We use find-method-type, analogous to find-method, to find
the type of the method. If the type of the target is not a class or interface,
then type->class-name will report an error. If there is no correspond-
ing method, then find-method-type will report an error. We then call
type-of-call to verify that the types of the operands are compatible with
the types expected by the method, and to return the type of the result.

For a new expression, we first retrieve the class information for the class
name. If there is no class associated with the name, a type error is reported.
Last, we call type-of-call with the types of the operands to see if the
call to initialize is safe. If these checks succeed, then the execution of
the expression is safe. Since the new expression returns a new object of the
specified class, the type of the result is the corresponding type of the class.

We have now completed our discussion of checking expressions in
TYPED-OO, so we now return to constructing the static class environment.

To build the static class environment, initialize-static-class-
env! first sets the static class environment to empty, and then adds a binding
for the class object. It then goes through each class or instance declaration
and adds an appropriate entry to the static class environment.

initialize-static-class-env! : Listof(ClassDecl) → Unspecified
(define initialize-static-class-env!

(lambda (c-decls)
(empty-the-static-class-env!)
(add-static-class-binding!

’object (a-static-class #f ’() ’() ’() ’()))
(for-each add-class-decl-to-static-class-env! c-decls)))

The procedure add-class-decl-to-static-class-env! (fig. 9.18)
does the bulk of the work of creating the static classes. For each class, we
must collect all its interfaces, fields, and methods:

• A class implements any interfaces that its parent implements, plus the
interfaces that it claims to implement.

• A class has the fields that its parent has, plus its own, except that
its parent’s fields are shadowed by the locally declared fields. So the
field-names are calculated with append-field-names, just as in
initialize-class-env! (page 344).

9.6 The Type Checker 363

check-is-subtype! : Type × Type × Exp → Unspecified
(define check-is-subtype!

(lambda (ty1 ty2 exp)
(if (is-subtype? ty1 ty2)
#t
(report-subtype-failure

(type-to-external-form ty1)
(type-to-external-form ty2)
exp))))

is-subtype? : Type × Type → Bool
(define is-subtype?

(lambda (ty1 ty2)
(cases type ty1
(class-type (name1)

(cases type ty2
(class-type (name2)
(statically-is-subclass? name1 name2))

(else #f)))
(proc-type (args1 res1)

(cases type ty2
(proc-type (args2 res2)
(and

(every2? is-subtype? args2 args1)
(is-subtype? res1 res2)))

(else #f)))
(else (equal? ty1 ty2)))))

statically-is-subclass? : ClassName × ClassName → Bool
(define statically-is-subclass?

(lambda (name1 name2)
(or
(eqv? name1 name2)
(let ((super-name

(static-class->super-name
(lookup-static-class name1))))

(if super-name
(statically-is-subclass? super-name name2)
#f))

(let ((interface-names
(static-class->interface-names

(lookup-static-class name1))))
(memv name2 interface-names)))))

Figure 9.16 Subtyping in TYPED-OO

364 9 Objects and Classes

(method-call-exp (obj-exp method-name rands)
(let ((arg-types (types-of-exps rands tenv))

(obj-type (type-of obj-exp tenv)))
(type-of-call

(find-method-type
(type->class-name obj-type)
method-name)

arg-types
rands
exp)))

(super-call-exp (method-name rands)
(let ((arg-types (types-of-exps rands tenv))

(obj-type (apply-tenv tenv ’%self)))
(type-of-call

(find-method-type
(apply-tenv tenv ’%super)
method-name)

arg-types
rands
exp)))

(new-object-exp (class-name rands)
(let ((arg-types (types-of-exps rands tenv))

(c (lookup-static-class class-name)))
(cases static-class c

(an-interface (method-tenv)
(report-cant-instantiate-interface class-name))

(a-static-class (super-name i-names
field-names field-types
method-tenv)

(type-of-call
(find-method-type

class-name
’initialize)

arg-types
rands
exp)

(class-type class-name)))))

Figure 9.17 type-of clauses for object-oriented expressions, part 2

9.6 The Type Checker 365

• The types of the class’s fields are the types of its parent’s fields, plus the
types of its locally declared fields.

• The methods of the class are those of its parent plus its own, with their
declared types. We keep the type of a method as a proc-type. We put
the locally declared methods first, since they override the parent’s meth-
ods.

• We check that there are no duplicates among the local method names, the
interface names, and the field names. We also make sure that there is an
initialize method available in the class.

For an interface declaration, we need only process the method names and
their types.

Once the static class environment has been built, we can check each class
declaration. This is done by check-class-decl! (figure 9.19). For an
interface, there is nothing to check. For a class declaration, we check each
method, passing along information collected from the static class environ-
ment. Finally, we check to see that the class actually implements each of the
interfaces that it claims to implement.

To check a method declaration, we first check to see whether its body
matches its declared type. To do this, we build a type environment that
matches the environment in which the body will be evaluated. We then check
to see that the result type of the body is a subtype of the declared result type.

We are not done, however: we have to make sure that if this method is
overriding some method in the superclass, then it has a type that is com-
patible with the superclass method’s type. We have to do this because this
method might be called from a method that knows only about the super-
type. The only exception to this rule is initialize, which is only called at
the current class, and which needs to change its type under inheritance (see
figure 9.12). To do this, it calls maybe-find-method-type, which returns
either the type of the method if it is found, or #f otherwise. See figure 9.20.

The procedure check-if-implements?, shown in figure 9.21, takes two
symbols, which should be a class name and an interface name. It first checks
to see that each symbol names what it should name. It then goes through
each method in the interface and checks to see that the class provides a
method with the same name and a compatible type.

The static class environment built for the sample program of figure 9.12
is shown in figure 9.22. The static classes are in reverse order, reflecting the

366 9 Objects and Classes

add-class-decl-to-static-class-env! : ClassDecl → Unspecified
(define add-class-decl-to-static-class-env!

(lambda (c-decl)
(cases class-decl c-decl

(an-interface-decl (i-name abs-m-decls)
(let ((m-tenv

(abs-method-decls->method-tenv abs-m-decls)))
(check-no-dups! (map car m-tenv) i-name)
(add-static-class-binding!

i-name (an-interface m-tenv))))
(a-class-decl (c-name s-name i-names

f-types f-names m-decls)
(let ((i-names

(append
(static-class->interface-names

(lookup-static-class s-name))
i-names))

(f-names
(append-field-names

(static-class->field-names
(lookup-static-class s-name))

f-names))
(f-types
(append

(static-class->field-types
(lookup-static-class s-name))

f-types))
(method-tenv
(let ((local-method-tenv

(method-decls->method-tenv m-decls)))
(check-no-dups!

(map car local-method-tenv) c-name)
(merge-method-tenvs

(static-class->method-tenv
(lookup-static-class s-name))

local-method-tenv))))
(check-no-dups! i-names c-name)
(check-no-dups! f-names c-name)
(check-for-initialize! method-tenv c-name)
(add-static-class-binding! c-name

(a-static-class
s-name i-names f-names f-types method-tenv)))))))

Figure 9.18 add-class-decl-to-static-class-env!

9.6 The Type Checker 367

check-class-decl! : ClassDecl → Unspecified
(define check-class-decl!

(lambda (c-decl)
(cases class-decl c-decl
(an-interface-decl (i-name abs-method-decls)

#t)
(a-class-decl (class-name super-name i-names

field-types field-names method-decls)
(let ((sc (lookup-static-class class-name)))

(for-each
(lambda (method-decl)

(check-method-decl! method-decl
class-name super-name
(static-class->field-names sc)
(static-class->field-types sc)))

method-decls))
(for-each

(lambda (i-name)
(check-if-implements! class-name i-name))

i-names)))))

Figure 9.19 check-class-decl!

order in which the class environment is built. Each of the three classes has
its methods in the same order, with the same type, as desired.

This completes the presentation of the checker.

Exercise 9.33 [�] Extend the type checker to enforce the safety property that no
instanceof or cast expression is ever performed on a value that is not an object,
or on a type that is not a class.

Exercise 9.34 [�] The expression cast e c cannot succeed unless the type of e is
either a descendant or an ancestor of c. (Why?) Extend the type checker to guaran-
tee that the program never evaluates a cast expression unless this property holds.
Extend the checker for instanceof to match.

Exercise 9.35 [�] Extend the type checker to enforce the safety property that an
initialize method is called only from within a new-object-exp.

Exercise 9.36 [�] Extend the language to allow interfaces to inherit from other inter-
faces. An interface should require all the methods required by all of its parents.

368 9 Objects and Classes

check-method-decl! :
MethodDecl × ClassName × ClassName× Listof(FieldName) × Listof(Type)

→ Unspecified
(define check-method-decl!

(lambda (m-decl self-name s-name f-names f-types)
(cases method-decl m-decl

(a-method-decl (res-type m-name vars var-types body)
(let ((tenv

(extend-tenv
vars var-types
(extend-tenv-with-self-and-super

(class-type self-name)
s-name
(extend-tenv f-names f-types
(init-tenv))))))

(let ((body-type (type-of body tenv)))
(check-is-subtype! body-type res-type m-decl)
(if (eqv? m-name ’initialize) #t

(let ((maybe-super-type
(maybe-find-method-type

(static-class->method-tenv
(lookup-static-class s-name))

m-name)))
(if maybe-super-type

(check-is-subtype!
(proc-type var-types res-type)
maybe-super-type body)

#t)))))))))

Figure 9.20 check-method-decl!

Exercise 9.37 [� �] Our language TYPED-OO uses dynamic dispatch. An alternative
design is static dispatch. In static dispatch, the choice of method depends on an object’s
type rather than its class. Consider the example

class c1 extends object
method int initialize () 1
method int m1 () 11
staticmethod int m2 () 21

class c2 extends c1
method void m1 () 12
staticmethod int m2 () 22

9.6 The Type Checker 369

check-if-implements! : ClassName × InterfaceName → Bool
(define check-if-implements!

(lambda (c-name i-name)
(cases static-class (lookup-static-class i-name)
(a-static-class (s-name i-names f-names f-types

m-tenv)
(report-cant-implement-non-interface

c-name i-name))
(an-interface (method-tenv)

(let ((class-method-tenv
(static-class->method-tenv
(lookup-static-class c-name))))

(for-each
(lambda (method-binding)

(let ((m-name (car method-binding))
(m-type (cadr method-binding)))

(let ((c-method-type
(maybe-find-method-type

class-method-tenv
m-name)))

(if c-method-type
(check-is-subtype!

c-method-type m-type c-name)
(report-missing-method

c-name i-name m-name)))))
method-tenv))))))

Figure 9.21 check-if-implements

let f = proc (x : c1) send x m1()
g = proc (x : c1) send x m2()
o = new c2()

in list((f o), (g o))

When f and g are called, x will have type c1, but it is bound to an object of class c2.
The method m1 uses dynamic dispatch, so c2’s method for m1 is invoked, returning
12. The method m2 uses static dispatch, so sending an m2 message to x invokes the
method associated with the type of x, in this case c1, so 21 is returned.

Modify the interpreter of section 9.5 to handle static methods. As a hint, think about
keeping type information in the environment so that the interpreter can figure out the
type of the target expression in a send.

370 9 Objects and Classes

((leaf-node
#(struct:a-static-class

object
(tree)
(value)
(#(struct:int-type))
((initialize #(struct:proc-type

(#(struct:int-type))
#(struct:void-type)))

(sum #(struct:proc-type () #(struct:int-type)))
(getvalue #(struct:proc-type () #(struct:int-type)))
(equal #(struct:proc-type

(#(struct:class-type tree))
#(struct:bool-type))))))

(interior-node
#(struct:a-static-class

object
(tree)
(left right)
(#(struct:class-type tree) #(struct:class-type tree))
((initialize #(struct:proc-type

(#(struct:class-type tree)
#(struct:class-type tree))

#(struct:void-type)))
(getleft #(struct:proc-type ()

#(struct:class-type tree)))
(getright #(struct:proc-type ()

#(struct:class-type tree)))
(sum #(struct:proc-type () #(struct:int-type)))
(equal #(struct:proc-type

(#(struct:class-type tree))
#(struct:bool-type))))))

(tree
#(struct:an-interface

((sum #(struct:proc-type () #(struct:int-type)))
(equal #(struct:proc-type

(#(struct:class-type tree))
#(struct:bool-type))))))

(object
#(struct:a-static-class #f () () () ())))

Figure 9.22 Static class environment built for the sample program

9.6 The Type Checker 371

Exercise 9.38 [� �] Why must the class information be added to the static class envi-
ronment before the methods are checked? As a hint, consider what happens if a
method body invokes a method on self?)

Exercise 9.39 [� �] Make the typechecker prevent calls to initialize other than
the implicit call inside new.

Exercise 9.40 [�] Modify the design of the language so that every field declaration
contains an expression that is used to initialize the field. Such a design has the advan-
tage that a checked program will never refer to an uninitialized value.

Exercise 9.41 [� �] Extend the typechecker to handle fieldref and fieldset, as
in exercise 9.8.

Exercise 9.42 [� �] In the type checker, static methods are treated in the same way as
ordinary methods, except that a static method may not be overridden by a dynamic
one, or vice versa. Extend the checker to handle static methods.

A For Further Reading

Here are some of the readings that taught, influenced, or inspired us in the
creation of this book. We hope you will enjoy at least some of them as much
as we did.

Those new to recursive programming and symbolic computation might
look at The Little Schemer (Friedman & Felleisen, 1996), or The Little MLer
(Felleisen & Friedman, 1996), or for the more historically minded, The Lit-
tle LISPer (Friedman, 1974). How to Design Programs (Felleisen et al., 2001)
provides an in-depth treatment of how to program recursively, intended as a
first course in computing.

Using induction to define sets and relations is a long-standing technique in
mathematical logic. Our bottom-up and rules-of-inference styles are largely
modeled after the work of Plotkin (1975, 1981). Our “top-down” style is
patterned after an alternative technique called coinduction (see Gordon, 1995;
Jacobs & Rutten, 1997), used also by Felleisen et al. (2001).

Context-free grammars are a standard tool in both linguistics and comput-
er science. Most compiler books, such as Aho et al. (2006), have an extensive
discussion of grammars and parsing algorithms. The idea of separating con-
crete and abstract syntax is usually credited to McCarthy (1962), who empha-
sized the use of an interface to make the parse tree abstract.

Our Follow the Grammar slogan is based on structural induction, which was
introduced by Burstall (1969). Subgoal induction (Morris & Wegbreit, 1977)
is a useful way of proving the correctness of recursive procedures even if
they do not Follow the Grammar. Subgoal induction also works when an
invariant constrains the possible inputs to the procedures.

Generalization is a standard technique from mathematics, where one often
proves a specific statement as a special case of a more general one. Our char-
acterization of extra arguments as abstractions of the context is motivated by
the use of inherited attributes in attribute grammars (Knuth, 1968).

374 A For Further Reading

Our define-datatype and cases constructs were inspired by ML’s
datatype and pattern-matching facilities described in Milner et al. (1989)
and its revision Milner et al. (1997).

The lambda calculus was introduced by Church (1941) to study mathe-
matical logic, but it has become the inspiration for much of the modern
theory of programming languages. Introductory treatments of the lambda
calculus may be found in Hankin (1994), Peyton Jones (1987), or Stoy (1977).
Barendregt (1981, 1991) provides an encyclopedic reference.

Contour diagrams, as in figure 3.13, have been used for explaining lexical
scope and were first presented by Johnston (1971). The nameless interpreter
and translator are based on de Bruijn indices (de Bruijn, 1972).

Scheme was introduced by Sussman & Steele (1975). Its development is
recorded in Steele & Sussman (1978); Clinger et al. (1985a); Rees et al. (1986);
Clinger et al. (1991); Kelsey et al. (1998). The standard definitions of Scheme
are provided by the IEEE standard (IEEE, 1991) and the Revised6 Report on the
Algorithmic Language Scheme (Sperber et al., 2007).

Dybvig (2003) provides a short introduction to Scheme that includes many
insightful examples.

The idea of an interpreter goes at least as far back as Turing, who defined
a “universal” machine that could simulate any Turing machine. This univer-
sal machine was essentially an interpreter that took a coded description of a
Turing machine and simulated the encoded machine (Turing, 1936). A clas-
sical von Neumann machine (von Neumann, 1945) is likewise an interpreter,
implemented in hardware, that interprets machine language programs.

The modern use of interpreters dates back to McCarthy (1960), who pre-
sented a metacircular interpreter (an interpreter written in the defined lan-
guage itself) as an illustration of the power of Lisp. Of course, such an inter-
preter brings with it an important difficulty: if a language is being defined in
terms of itself, we need to understand the language in order to understand
the language definition. Indeed, the same problem arises even if the inter-
preter is not metacircular. The reader still needs to understand the language
in which the definition is written before he or she can understand the thing
being defined.

Over the years, a variety of techniques have been used to resolve this diffi-
culty. We treat our interpreters as transcriptions of equational specifications
(Goguen et al., 1977) or big-step operational semantics in the style of Plotkin
(1975, 1981). This relies only on fairly straightforward mathematics.

375

Denotational semantics is another technique that defines a language in
terms of mathematics. In this approach, the interpreter is replaced by a func-
tion that translates each program in the defined language into a mathemati-
cal object that defines its behavior. Plotkin (1977) provides an indispensable
introduction to this technique, and Winskel (1993) gives a more leisurely
exploration. Milne & Strachey (1976) is an encyclopedic study of how this
technique can be used to model a wide variety of language features.

Another approach is to write the interpreter in a subset of the language
being defined. For example, our interpreters in chapter 4 rely on Scheme’s
store to explain the concept of a store, but they use only a single global muta-
ble object, rather than the full power of Scheme’s mutable variables.

The idea of computing as manipulating a store goes back to the beginning
of modern computing (see von Neumann, 1945). The design of EXPLICIT-
REFS is based on the store model of ML (Milner et al., 1989), which is similar
to that of Bliss (Wulf, 1971). The design of IMPLICIT-REFS is close to that
of most standard programming languages, such as Pascal, Scheme, or Java,
that have mutable local variables.

The terms “L-value” and “R-value,” and the environment-store model of
memory, are due to Strachey (1967).

Fortran (Backus et al., 1957) was the first language to use call-by-reference,
and Algol 60 (Naur et al., 1963) was the first language to use call-by-name.
Friedman & Wise (1976) gave an early demonstration of the power of perva-
sive lazy evaluation. Haskell (Hudak et al., 1990) was the first practical lan-
guage to use call-by-need. Plotkin (1975) showed how to model call-by-value
and call-by-name in the lambda calculus. To model call-by-name, Ingerman
(1961) invented thunks. We used them with an effect to model call-by-need.
This is similar to memoization (Michie, 1968).

Monads, introduced by Moggi (1991) and popularized by Wadler (1992),
provide a systematic model of effects in programming languages. Monads
provide an organizing principle for nonfunctional behavior in the functional
language Haskell (Peyton Jones, 2001).

Reynolds (1993) gives a fascinating history of the several independent dis-
coveries of continuations. Strachey & Wadsworth (1974) is probably the most
influential of these. Reynolds (1972) transforms a metacircular interpreter
into CPS and shows how doing this avoids some of the problems of metacir-
cularity. The translation of programs in tail form to imperative form dates
back to McCarthy (1962) and its importance as a programming technique
was emphasized in Abelson & Sussman (1985, 1996).

376 A For Further Reading

Plotkin (1975) gave a very clean version of the CPS transformation and
worked out its theoretical properties. Fischer (1972) presented a very similar
version of the transformation. The connection between continuations and
accumulators, as in the fact example at the end of section 6.1, was first
explored by Wand (1980b).

The idea of making the continuation available to the program goes back
to the J-operator of Landin (1965a) (see also Landin 1965b), and was used
extensively in Lisp and early versions of Scheme (Steele & Sussman, 1978).
Our letcc is based on Scheme’s call-with-current-continuation,
which first appeared in Clinger et al. (1985b).

Wand (1980a) showed how continuations could be used as a model for
lightweight processes or threads. Continuations may also be used for a
variety of purposes beyond those discussed in the text, such as coroutines
(Haynes et al., 1986).

Our treatment of threads approximates POSIX threads (see, for example,
Lewis & Berg, 1998). Exercise 5.56 is based on the Erlang message-passing
concurrency model (Armstrong, 2007).

Steele’s RABBIT compiler (Steele, 1978) used CPS conversion as the basis
for a compiler. In this compiler, the source program was converted into CPS
and then transformed to use data-structure representations of the continua-
tions. The resulting program, like our registerized programs, could be com-
piled easily. This line of development led to the ORBIT compiler (Kranz et al.,
1986) and to the Standard ML of New Jersey compiler (Appel & Jim, 1989).

The CPS algorithm in chapter 6 is based on the first-order composi-
tional algorithm of Danvy & Nielsen (2003). There is a long history of
CPS translations, including Sabry & Wadler (1997), which improved on
Sabry & Felleisen (1993), which in turn was motivated by the CPS algo-
rithm of chapter 8 of the first edition of this book. Exercise 6.30 is based on
the higher-order compositional CPS algorithm of Danvy & Filinski (1992).
A-normal form (Exercise 6.34) as an alternative to CPS was introduced by
Sabry & Felleisen (1992); Flanagan et al. (1993).

Most current work in typed programming languages can be traced back
to Milner (1978), who introduced types in ML as a way of guaranteeing the
reliability of computer-generated proofs. Ullman (1998) gives a good short
introduction. A complementary treatment is Felleisen & Friedman (1996);
see also Paulson (1996); Smith (2006).

Type inference has been discovered several times. The standard refer-
ence is Hindley (1969), though Hindley remarks that the results were known
to Curry in the 1950s. Morris (1968) also proposed type inference, but the
widespread use of type inference did not happen until Milner’s 1978 paper.

377

The separation of type inference into equation generation and solving was
first articulated by Wand (1987). The system in Milner (1978), known as
Hindley-Milner polymorphism, is essentially the same as the system of exer-
cise 7.28. The two volumes of Pierce (2002, 2004) give an encyclopedic treat-
ment of types.

The idea of data abstraction was a prime innovation of the 1970s and has
a large literature, from which we mention only Parnas (1972) on the impor-
tance of interfaces as boundaries for information-hiding. An implementation
of a data type was any set of values and operations that satisfied the spec-
ification of that data type. Goguen et al. (1977) showed that any data type
could be implemented as a set of trees that recorded how a value was con-
structed, and that there was a unique mapping from such a set of trees to
any other implementation of the data type. Conversely, any data type can
be implemented using a procedural representation, in which the data is rep-
resented by its action under the observers, and in which there is a unique
mapping from any other implementation of the data type to the procedural
representation (Giarratana et al., 1976; Wand, 1979; Kamin, 1980).

The use of types to enforce data abstraction appeared in Reynolds (1975)
and types were used in CLU (Liskov et al., 1977). This grew into the module
system of Standard ML (Milner et al., 1989) (see also Paulson, 1996; Ullman,
1998). Our module system is based on that of Leroy (1994), which is used in
CAML (see Smith, 2006), another variation of ML.

Simula 67 (Birtwistle et al., 1973) is generally regarded as the first object-
oriented language. The object-oriented metaphor was extended by Smalltalk
(Goldberg & Robson, 1983) and by Actors (Hewitt, 1977). Both use human
interaction and sending and receiving messages as the metaphor for explain-
ing their ideas. Scheme grew out of Sussman and Steele’s attempts to
understand Hewitt’s actor model. Abelson & Sussman (1985, 1996) and
Springer & Friedman (1989) provide further examples of object-oriented pro-
gramming in Scheme and discuss when functional and imperative program-
ming styles are most appropriate. Steele (1990) and Kiczales et al. (1991)
describe CLOS, the powerful object-oriented programming facility of Com-
mon Lisp.

The language in chapter 9 is based on the object model of Java. The stan-
dard reference is Arnold & Gosling (1998), but Gosling et al. (1996) is the
specification for the serious reader.

378 A For Further Reading

Ruby (see Thomas et al., 2005) Python (van Rossum & Drake, 2006), and
Perl (Wall et al., 2000; Dominus, 2005), and are untyped languages with both
objects and procedures, roughly comparable to our CLASSES. C# is a typed
language that adds many features to Java, most notably delegates, which are
similar to procedures, and the ability for a programmer to specify that certain
calls should be tail calls.

Abadi & Cardelli (1996) define a very simple object calculus that is a use-
ful foundation for the study of types in object-oriented systems. Flatt et al.
(1998) formalize a subset of Java. Another useful subset is Featherweight Java
(Igarashi et al., 1999).

Gamma et al. (1995) give a fascinating handbook of useful organizational
principles for writing object-oriented programs.

The ACM has run three conferences on the history of programming lan-
guages, in 1978 (Wexelblatt, 1978), 1996 (Bergin & Gibson, 1996), and 2007
(Hailpern, 2007). These conferences contain papers describing the history
of a wide variety of programming languages. The IEEE Annals of the Histo-
ry of Computing contains scholarly articles on various aspects of computing
history, including programming languages. Knuth & Pardo (1977) give a fas-
cinating history of very early programming languages.

There are numerous conferences in which new developments in program-
ming languages are reported. The three leading conferences, at least for the
topics discussed in this book, are the ACM Symposium on Principles of Pro-
gramming Languages (POPL), the ACM SIGPLAN International Conference on
Functional Programming (ICFP), and the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). Major academic jour-
nals for programming languages include ACM Transactions on Programming
Languages and Systems, the Journal of Functional Programming, and Higher-
Order and Symbolic Computation. In addition to these, there are web sites
devoted to almost every aspect of programming languages.

B The SLLGEN Parsing System

Programs are just strings of characters. In order to process a program, we
need to group these characters into meaningful units. This grouping is usu-
ally divided into two stages: scanning and parsing.

Scanning is the process of dividing the sequence of characters into words,
punctuation, etc. These units are called lexical items, lexemes, or most often
tokens. Parsing is the process of organizing the sequence of tokens into hier-
archical syntactic structures such as expressions, statements, and blocks. This
is much like organizing a sentence into clauses.

SLLGEN is a package for generating scanners and parsers in Scheme. In
this appendix, we first review the basics of scanning and parsing, and then
consider how these capabilities are expressed in SLLGEN.

B.1 Scanning

The problem of scanning is illustrated in figure B.1. There we show a small
portion of a program, and the way in which it is intended to be divided into
atomic units.

The way in which a given stream of characters is to be separated into lex-
ical items is part of the language specification. This part of the language
specification is sometimes called the lexical specification. Typical pieces of lex-
ical specification might be:

• Any sequence of spaces and newlines is equivalent to a single space.

• A comment begins with % and continues until the end of the line.

• An identifier is a sequence of letters and digits starting with a letter.

380 B The SLLGEN Parsing System

) begin baz

foo bar %here is a comment

")" "begin" ident

ident ident

comment ignored

distinguish punctuation, keywords from identifiers

space ignored

Figure B.1 The task of the scanner

The job of the scanner is to go through the input and analyze it to produce
data structures with these items. In a conventional language, the scanner
might be a procedure that, when called, produces the “next” token of the
input.

One could write a scanner from scratch, but that would be tedious and
error-prone. A better approach is to write down the lexical specification in
a specialized language. The most common language for this task is the lan-
guage of regular expressions. We define the language of regular expressions as
follows:

R ::= Character | R R | R ∪ R | R∗ | ¬ Character

Each regular expression matches some strings. We can use induction to
define the set of strings matched by each regular expression:

• A character c matches the string consisting of the character c.

• ¬c matches any 1-character string other than c.

• RS matches any string that consists of a string matching R followed by a
string matching S. This is called concatenation.

• R ∪ S matches any string that either matches R or matches S. This is some-
times written R|S, and is sometimes called alternation.

B.1 Scanning 381

• R∗ matches any string that is formed by concatenating some number n
(n ≥ 0) of strings that match R. This is called the Kleene closure of R.

Some examples may be helpful:

• ab matches only the string ab.

• ab∪ cd matches the strings ab and cd.

• (ab∪ cd)(ab∪ cd∪ e f) matches the strings abab, abcd, abef, cdab, cdcd,
and cdef.

• (ab)∗ matches the empty string, ab, abab, ababab, abababab,

• (ab ∪ cd)∗ matches the empty string, ab, cd, abab, abcd, cdab, cdcd,
ababab, . . .cdcdcd,

The examples above illustrate the precedence of the different operations.
Thus, ab∗ ∪ cd means (a(b∗))∪ (cd).

The specifications for our example may be written using regular expres-
sions as

whitespace = (space∪ newline) (space∪ newline)∗

comment = % (¬newline)∗

identifier = letter (letter∪ digit)∗

When scanners use regular expressions to specify a token, the rule is
always to take the longest match. This way xyz will be scanned as one iden-
tifier, not three.

When the scanner finds a token, it returns a data structure consisting of at
least the following pieces of data:

• A class, which describes what kind of token it has found. The set of such
classes is part of the lexical specification. SLLGEN uses Scheme symbols
to distinguish these classes; other syntactic analyzers might use other data
structures.

• A piece of data describing the particular token. The nature of this data is
also part of the lexical specification. For our system, the data is as follows:
for identifiers, the data is a Scheme symbol built from the string in the
token; for a number, the datum is the number described by the number
literal; and for a literal string, the datum is the string. String data are used
for keywords and punctuation. In an implementation language that did
not have symbols, one might use a string (the name of the identifier), or
an entry into a hash table indexed by identifiers (a symbol table) instead.

382 B The SLLGEN Parsing System

• Some data describing the location of this token in the input. This infor-
mation may be used by the parser to help the programmer identify the
location of syntactic errors.

In general, the internal structure of tokens is relevant only to the scanner
and the parser, so we will not describe it in any further detail.

B.2 Parsing

Parsing is the process of organizing the sequence of tokens into hierarchi-
cal syntactic structures such as expressions, statements, and blocks. This is
like organizing or diagramming a sentence into clauses. The syntactic struc-
ture of a language is typically specified using a BNF definition, also called a
context-free grammar (section 1.1.2).

The parser takes as input a sequence of tokens, and its output is an abstract
syntax tree (section 2.5). The abstract syntax trees produced by an SLLGEN
parser can be described by define-datatype. For a given grammar, there
will be one data type for each nonterminal. For each nonterminal, there will
be one variant for each production that has the nonterminal as its left-hand
side. Each variant will have one field for each nonterminal, identifier, or
number that appears in its right-hand side. A simple example appears in
section 2.5. To see what happens when there is more than one nonterminal
in the grammar, consider a grammar like the one in exercise 4.22.

Statement ::= { Statement ; Statement }
::= while Expression do Statement
::= Identifier := Expression

Expression ::= Identifier
::= (Expression - Expression)

The trees produced by this grammar could be described by this data type:

(define-datatype statement statement?
(compound-statement
(stmt1 statement?)
(stmt2 statement?))

(while-statement
(test expression?)
(body statement?))

(assign-statement
(lhs symbol?)
(rhs expression?)))

B.3 Scanners and Parsers in SLLGEN 383

(define-datatype expression expression?
(var-exp

(var symbol?))
(diff-exp

(exp1 expression?)
(exp2 expression?)))

For each nonterminal in a right-hand side, the corresponding tree appears
as a field; for each identifier, the corresponding symbol appears as a field.
The names of the variants will be specified in the grammar when it is written
in SLLGEN. The names of the fields will be automatically generated; here
we have introduced some mnemonic names for the fields. For example, the
input

{x := foo; while x do x := (x - bar)}

produces the output

#(struct:compound-statement
#(struct:assign-statement x #(struct:var-exp foo))
#(struct:while-statement

#(struct:var-exp x)
#(struct:assign-statement x

#(struct:diff-exp
#(struct:var-exp x)
#(struct:var-exp bar)))))

B.3 Scanners and Parsers in SLLGEN

Specifying Scanners

In SLLGEN, scanners are specified by regular expressions. Our example
would be written in SLLGEN as follows:

(define scanner-spec-a
’((white-sp (whitespace) skip)

(comment ("%" (arbno (not #\newline))) skip)
(identifier (letter (arbno (or letter digit))) symbol)
(number (digit (arbno digit)) number)))

384 B The SLLGEN Parsing System

If the scanner is used with a parser that has keywords or punctuation, like
while or =, it is not necessary to put these in the scanner manually; the
parser-generator will add those automatically.

A scanner specification in SLLGEN is a list that satisfies this grammar:

Scanner-spec ::= ({Regexp-and-action}∗)
Regexp-and-action ::= (Name ({Regexp}∗) Action)
Name ::= Symbol
Regexp ::= String | letter | digit | whitespace | any

::= (not Character) | (or {Regexp}∗)
::= (arbno Regexp) | (concat {Regexp}∗)

Action ::= skip | symbol | number | string

Each item in the list is a specification of a regular expression, consisting
of a name, a sequence of regular expressions, and an action to be taken on
success. The name is a Scheme symbol that will become the class of the token.

The second part of the specification is a sequence of regular expressions,
because the top level of a regexp in a scanner is almost always a concatena-
tion. A regular expression may be a string; one of four predefined testers:
letter (matches any letter), digit (matches any digit), whitespace
(matches any Scheme whitespace character), and any (matches any char-
acter); the negation of a character; or it may be a combination of regular
expressions, using a Scheme-like syntax with or and concat for union and
concatenation, and arbno for Kleene star.

As the scanner works, it collects characters into a buffer. When the scanner
determines that it has found the longest possible match of all the regular
expressions in the specification, it executes the action of the corresponding
regular expression.

An action can be one of the following:

• The symbol skip. This means this is the end of a token, but no token
is emitted. The scanner continues working on the string to find the next
token. This action is used for whitespace and comments.

• The symbol symbol. The characters in the buffer are converted into a
Scheme symbol and a token is emitted, with the class name as its class
and with the symbol as its datum.

• The symbol number. The characters in the buffer are converted into a
Scheme number, and a token is emitted, with the class name as its class
and with the number as its datum.

B.3 Scanners and Parsers in SLLGEN 385

• The symbol string. The characters in the buffer are converted into a
Scheme string, and a token is emitted, with the class name as its class and
with the string as its datum.

If there is a tie for longest match between two regular expressions, string
takes precedence over symbol. This rule means that keywords that would
otherwise be identifiers are treated as keywords.

Specifying Grammars

SLLGEN also includes a language for specifying grammars. The simple
grammar above would be written in SLLGEN as

(define grammar-a1
’((statement

("{" statement ";" statement "}")
compound-statement)

(statement
("while" expression "do" statement)
while-statement)

(statement
(identifier ":=" expression)
assign-statement)

(expression
(identifier)
var-exp)

(expression
("(" expression "-" expression ")")
diff-exp)))

A grammar in SLLGEN is a list described by the following grammar:

Grammar ::= ({Production}∗)
Production ::= (Lhs ({Rhs-item}∗) Prod-name)
Lhs ::= Symbol
Rhs-item ::= Symbol | String

::= (arbno {Rhs-item}∗)
::= (separated-list {Rhs-item}∗ String)

Prod-name ::= Symbol

A grammar is a list of productions. The left-hand side of the first pro-
duction is the start symbol for the grammar. Each production consists of a
left-hand side (a nonterminal symbol), a right-hand side (a list of rhs-item’s)

386 B The SLLGEN Parsing System

and a production name. The right-hand side of a production is a list of sym-
bols or strings. The symbols are nonterminals; strings are literal strings. A
right-hand side may also include arbno’s or separated-list’s; these are
discussed below. The production name is a symbol, which becomes the name
of the define-datatype variant corresponding to the production.

In SLLGEN, the grammar must allow the parser to determine which pro-
duction to use knowing only (1) what nonterminal it’s looking for and (2)
the first symbol (token) of the string being parsed. Grammars in this form
are called LL(1) grammars; SLLGEN stands for Scheme LL(1) parser GENer-
ator. This is somewhat restrictive in practice, but it is good enough for the
purposes of this book. SLLGEN produces a warning if the input grammar
fails to meet this restriction.

SLLGEN Operations

SLLGEN includes several procedures for incorporating these scanners and
grammars into an executable parser. Figure B.2 shows a sample of SLLGEN
used to define a scanner and parser for a language.

The procedure sllgen:make-define-datatypes is responsible for
generating a define-datatype expression for each production of the
grammar, for use by cases. The procedure sllgen:list-define-data-
types generates the define-data-type expressions again, but returns
them as a list rather than executing them. The field names generated by these
procedures are uninformative because the information is not in the grammar;
to get better field names, write out the define-datatype.

The procedure sllgen:make-string-scanner takes a scanner and a
grammar and generates a scanning procedure. The resulting procedure may
be applied to a string and produces a list of tokens. The grammar is used to
add keywords to the resulting scanning procedure. This procedure is useful
primarily for debugging.

The procedure sllgen:make-string-parser generates a parser. The
parser is a procedure that takes a string, scans it according to the scanner,
parses it according to the grammar, and returns an abstract syntax tree. As
with sllgen:make-string-scanner, the literal strings from the gram-
mar are included in the scanner.

SLLGEN can also be used to build a read-eval-print-loop (section 3.1). The
procedure sllgen:make-stream-parseris like the string version, except
that its input is a stream of characters and its output is a stream of tokens.
The procedure sllgen:make-rep-loop takes a string, a procedure of one

B.3 Scanners and Parsers in SLLGEN 387

(define scanner-spec-1 ...)

(define grammar-1 ...)

(sllgen:make-define-datatypes scanner-spec-1 grammar-1)

(define list-the-datatypes
(lambda ()

(sllgen:list-define-datatypes scanner-spec-1 grammar-1)))

(define just-scan
(sllgen:make-string-scanner scanner-spec-1 grammar-1))

(define scan&parse
(sllgen:make-string-parser scanner-spec-1 grammar-1))

(define read-eval-print
(sllgen:make-rep-loop "--> " value-of--program

(sllgen:make-stream-parser scanner-spec-1 grammar-1)))

Figure B.2 Using SLLGEN

argument , and a stream parser, and produces a read-eval-print loop that pro-
duces the string as a prompt on the standard output, reads characters from
the standard input, parses them, prints the result of applying the procedure
to the resulting abstract syntax tree, and recurs. For example:

> (define read-eval-print
(sllgen:make-rep-loop "--> " eval-program
(sllgen:make-stream-parser

scanner-spec-3-1
grammar-3-1)))

> (read-eval-print)
--> 5
5
--> add1(2)
3
--> +(add1(2),-(6,4))
5

The way in which control is returned from this loop to the Scheme read-
eval-print loop is system-dependent.

388 B The SLLGEN Parsing System

arbno and separated-list Pattern Keywords

An arbno keyword is a Kleene star in the grammar: it matches an arbitrary
number of repetitions of its entry. For example, the production

statement ::= { {statement ;}∗ }

could be written in SLLGEN as

(define grammar-a2
’((statement

("{" (arbno statement ";") "}")
compound-statement)

...))

This makes a compound statement a sequence of an arbitrary number of
semicolon-terminated statements.

This arbno generates a single field in the abstract syntax tree. This field
will contain a list of the data for the nonterminal inside the arbno. Our
example generates the following data types:

(define-datatype statement statement?
(compound-statement
(compound-statement32 (list-of statement?)))

...)

A simple interaction looks like:

> (define scan&parse2
(sllgen:make-string-parser scanner-spec-a grammar-a2))

> (scan&parse2 "{x := foo; y := bar; z := uu;}")
(compound-statement

((assign-statement x (var-exp foo))
(assign-statement y (var-exp bar))
(assign-statement z (var-exp uu))))

We can put a sequence of nonterminals inside an arbno. In this case, we
will get several fields in the node, one for each nonterminal; each field will
contain a list of syntax trees. For example:

(define grammar-a3
’((expression (identifier) var-exp)
(expression

("let" (arbno identifier "=" expression) "in" expression)
let-exp)))

B.3 Scanners and Parsers in SLLGEN 389

(define scan&parse3
(sllgen:make-string-parser scanner-spec-a grammar-a3))

This produces the data type

(define-datatype expression expression?
(var-exp (var-exp4 symbol?))
(let-exp

(let-exp9 (list-of symbol?))
(let-exp7 (list-of expression?))
(let-exp8 expression?)))

Here is an example of this grammar in action:

> (scan&parse3 "let x = y u = v in z")
(let-exp

(x u)
((var-exp y) (var-exp v))
(var-exp z))

The specification (arbno identifier "=" expression) generates two
lists: a list of identifiers and a list of expressions. This is convenient because
it will let our interpreters get at the pieces of the expression directly.

Sometimes it is helpful for the syntax of a language to use lists with sepa-
rators, not terminators. This is common enough that it is a built-in operation
in SLLGEN. We can write

(define grammar-a4
’((statement

("{" (separated-list statement ";") "}")
compound-statement)

...))

This produces the data type

(define-datatype statement statement?
(compound-statement

(compound-statement103 (list-of statement?)))
...)

Here is a sample interaction:

> (define scan&parse4
(sllgen:make-string-parser scanner-spec-a grammar-a4))

> (scan&parse4 "{}")
(compound-statement ())

390 B The SLLGEN Parsing System

> (scan&parse4 "{x:= y; u := v ; z := t}")
(compound-statement

((assign-statement x (var-exp y))
(assign-statement u (var-exp v))
(assign-statement z (var-exp t))))

> (scan&parse4 "{x:= y; u := v ; z := t ;}")
Error in parsing: at line 1
Nonterminal <seplist3> can’t begin with string "}"

In the last example, the input string had a terminating semicolon that did not
match the grammar, so an error was reported.

As with arbno, we can place an arbitrary sequence of nonterminals with-
in a separated-list keyword. In this case, we will get several fields in
the node, one for each nonterminal; each field will contain a list of syntax
trees. This is exactly the same data as would be generated by arbno; only
the concrete syntax differs.

We will occasionally use nested arbno’s and separated-list’s. A non-
terminal inside an arbno generates a list, so a nonterminal inside an arbno
inside an arbno generates a list of lists.

As an example, consider a compound-statement similar to the one in
grammar-a4, except that we have parallel assignments:

(define grammar-a5
’((statement

("{"
(separated-list
(separated-list identifier ",")
":="
(separated-list expression ",")
";")

"}")
compound-statement)

(expression (number) lit-exp)
(expression (identifier) var-exp)))

> (define scan&parse5
(sllgen:make-string-parser scanner-spec-a grammar-a5))

This generates the following data type for statement:

(define-datatype statement statement?
(compound-statement
(compound-statement4 (list-of (list-of symbol?)))
(compound-statement3 (list-of (list-of expression?)))))

B.3 Scanners and Parsers in SLLGEN 391

A typical interaction looks like:

> (scan&parse5 "{x,y := u,v ; z := 4; t1, t2 := 5, 6}")
(compound-statement

((x y) (z) (t1 t2))
(((var-exp u) (var-exp v))
((lit-exp 4))
((lit-exp 5) (lit-exp 6))))

Here the compound-statementhas two fields: a list of lists of identifiers,
and the matching list of lists of expressions. In this example we have used
separated-list instead of arbno, but an arbnowould generate the same
data.

Exercise B.1 [�] The following grammar for ordinary arithmetic expressions builds
in the usual precedence rules for arithmetic operators:

Arith-expr ::= Arith-term {Additive-op Arith-term}∗

Arith-term ::= Arith-factor {Multiplicative-op Arith-factor}∗

Arith-factor ::= Number
::= (Arith-expr)

Additive-op ::= + | -
Multiplicative-op ::= * | /

This grammar says that every arithmetic expression is the sum of a non-empty
sequence of terms; every term is the product of a non-empty sequence of factors;
and every factor is either a constant or a parenthesized expression.

Write a lexical specification and a grammar in SLLGEN that will scan and parse
strings according to this grammar. Verify that this grammar handles precedence cor-
rectly, so that, for example 3+2*66-5 gets grouped correctly, as 3 + (2 × 66) − 5.

Exercise B.2 [� �] Why can’t the grammar above be written with separated-list?

Exercise B.3 [� �] Define an interpreter that takes the syntax tree produced by the
parser of exercise B.1 and evaluates it as an arithmetic expression. The parser takes
care of the usual arithmetic precedence operations, but the interpreter will have to
take care of associativity, that is, making sure that operations at the same precedence
level (e.g. additions and subtractions) are performed from left to right. Since there
are no variables in these expressions, this interpreter need not take an environment
parameter.

Exercise B.4 [� �] Extend the language and interpreter of the preceding exercise to
include variables. This new interpreter will require an environment parameter.

Exercise B.5 [�] Add unary minus to the language and interpreter, so that inputs like
3*-2 are handled correctly.

Bibliography

Abadi, Martín, & Cardelli, Luca. 1996. A Theory of Objects. Berlin, Heidelberg, and
New York: Springer-Verlag.

Abelson, Harold, & Sussman, Gerald Jay. 1985. The Structure and Interpretation of Com-
puter Programs. Cambridge, MA: MIT Press.

Abelson, Harold, & Sussman, Gerald Jay. 1996. Structure and Interpretation of Computer
Programs. Second edition. Cambridge, MA: McGraw Hill.

Aho, Alfred V., Lam, Monica S., Sethi, Ravi, & Ullman, Jeffrey D. 2006. Compilers:
Principles, Techniques, and Tools. Second edition. Boston: Addison-Wesley Longman.

Appel, Andrew W. & Jim, Trevor. 1989. Continuation-Passing, Closure-Passing Style.
Pages 293–302 of: Proceedings ACM Symposium on Principles of Programming Lan-
guages.

Arnold, Ken, & Gosling, James. 1998. The Java Programming Language. Second edition.
The Java Series. Reading, MA: Addison-Wesley.

Armstrong, Joe. 2007. Programming Erlang: Software for a Concurrent World. The Prag-
matic Programmers Publishers.

Backus, John W., et al. 1957. The Fortran Automatic Coding System. Pages 188–198
of: Western Joint Computer Conference.

Barendregt, Henk P. 1981. The Lambda Calculus: Its Syntax and Semantics. Amsterdam:
North-Holland.

Barendregt, Henk P. 1991. The Lambda Calculus. Revised edition. Studies in Logic and
the Foundations of Mathematics, no. 103. Amsterdam: North-Holland.

Bergin, Thomas J., & Gibson, Richard G. (eds.). 1996. History of Programming Lan-
guages. New York: Addison-Wesley.

Birtwistle, Graham M., Dahl, Ole-Johan, & Myhrhaug, Bjorn. 1973. Simula Begin.
Philadelphia: Auerbach.

394 Bibliography

Burstall, Rod M. 1969. Proving Properties of Programs by Structural Induction. Com-
puter Journal, 12(1), 41–48.

Church, Alonzo. 1941. The Calculi of Lambda Conversion. Princeton, NJ: Princeton
University Press. Reprinted 1963 by University Microfilms, Ann Arbor, MI.

Clinger, William D., et al. 1985a. The Revised Revised Report on Scheme or The
Uncommon Lisp. Technical Memo AIM-848. Massachusetts Institute of Technol-
ogy, Artificial Intelligence Laboratory.

Clinger, William D., Friedman, Daniel P., & Wand, Mitchell. 1985b. A Scheme for
a Higher-Level Semantic Algebra. Pages 237–250 of: Reynolds, John, & Nivat,
Maurice (eds.), Algebraic Methods in Semantics: Proceedings of the US-French Seminar
on the Application of Algebra to Language Definition and Compilation (Fontainebleau,
France, June, 1982). Cambridge: Cambridge University Press.

Clinger, William D., Rees, Jonathan, et al. 1991. The Revised4 Report on the Algorith-
mic Language Scheme. ACM Lisp Pointers, 4(3), 1–55.

Danvy, Olivier, & Filinski, Andrzej. 1992. Representing Control: A Study of the CPS
Transformation. Mathematical Structures in Computer Science, 2(4), 361–391.

Danvy, Olivier, & Nielsen, Lasse R. 2003. A First-order One-pass CPS Transformation.
Theoretical Computer Science, 308(1-3), 239–257.

de Bruijn, N. G. 1972. Lambda Calculus Notation with Nameless Dummies: A Tool
for Automatic Formula Manipulation, with Application to the Church-Rosser The-
orem. Indagationes Mathematicae, 34, 381–392.

Dominus, Mark Jason. 2005. Higher-Order Perl: Transforming Programs with Programs.
San Francisco: Morgan Kaufmann Publishers.

Dybvig, R. Kent. 2003. The Scheme Programming Language. Third edition. Cambridge,
MA: MIT Press.

Felleisen, Matthias, & Friedman, Daniel P. 1996. The Little MLer. Cambridge, MA:
MIT Press.

Felleisen, Matthias, Findler, Robert Bruce, Flatt, Matthew, & Krishnamurthi, Shriram.
2001. How to Design Programs. Cambridge, MA: MIT Press.

Fischer, Michael J. 1972. Lambda-Calculus Schemata. Pages 104–109 of: Proceed-
ings ACM Conference on Proving Assertions about Programs. Republished in Lisp and
Symbolic Computation, 6(3/4), 259–288.

Flanagan, Cormac, Sabry, Amr, Duba, Bruce F., & Felleisen, Matthias. 1993. The
Essence of Compiling with Continuations. Pages 237–247 of: Proceedings ACM
SIGPLAN 1993 Conf. on Programming Language Design and Implementation, PLDI’93,
Albuquerque, NM, USA, 23–25 June 1993, vol. 28(6). New York: ACM Press.

Flatt, Matthew, Krishnamurthi, Shriram, & Felleisen, Matthias. 1998. Classes and
Mixins. Pages 171–183 of: Proceedings ACM Symposium on Principles of Programming
Languages.

Bibliography 395

Friedman, Daniel P. 1974. The Little LISPer. Palo Alto, CA: Science Research Asso-
ciates.

Friedman, Daniel P., & Felleisen, Matthias. 1996. The Little Schemer. Fourth edition.
Cambridge, MA: MIT Press.

Friedman, Daniel P., & Wise, David S. 1976. Cons should not Evaluate its Arguments.
Pages 257–284 of: Michaelson, S., & Milner, R. (eds.), Automata, Languages and Pro-
gramming. Edinburgh: Edinburgh University Press.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John. 1995. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison Wesley.

Giarratana, V., Gimona, F., & Montanari, U. 1976. Observability Concepts in Abstract
Data Type Specifications. Pages 576–587 of: Mazurkiewicz, A. (ed.), Mathematical
Foundations of Computer Science 1976. Lecture Notes in Computer Science, vol. 45.
Berlin, Heidelberg, New York: Springer-Verlag.

Goguen, Joseph A., Thatcher, James W., Wagner, Eric G., & Wright, Jesse B. 1977.
Initial Algebra Semantics and Continuous Algebras. Journal of the ACM, 24, 68–95.

Goldberg, Adele, & Robson, David. 1983. Smalltalk-80: The Language and Its Implemen-
tation. Reading, MA: Addison-Wesley.

Gordon, Andrew D. 1995. A Tutorial on Co-induction and Functional Programming.
Pages 78–95 of: Functional Programming, Glasgow 1994. Berlin, Heidelberg, and
New York: Springer Workshops in Computing.

Gosling, James, Joy, Bill, & Steele, Guy L. 1996. The Java Language Specification. The
Java Series. Reading, MA: Addison-Wesley.

Hailpern, Brent (ed.). 2007. HOPL III: Proceedings of the Third ACM SIGPLAN Confer-
ence on History of Programming Languages. New York: ACM Press.

Hankin, Chris. 1994. Lambda Calculi: A Guide for Computer Scientists. Graduate Texts
in Computer Science, vol. 3. Oxford: Clarendon Press.

Haynes, Christopher T., Friedman, Daniel P., & Wand, Mitchell. 1986. Obtaining
Coroutines with Continuations. J. of Computer Languages, 11(3/4), 143–153.

Hewitt, Carl. 1977. Viewing Control Structures as Patterns of Passing Messages. Arti-
ficial Intelligence, 8, 323–364.

Hindley, Roger. 1969. The Principal Type-Scheme of an Object in Combinatory Logic.
Transactions of the American Mathematical Society, 146, 29–60.

Hudak, Paul, et al. 1990. Report on the Programming Language HASKELL. Technical
Report YALEU/DCS/RR-777. Yale University, CS Dept.

IEEE. 1991. IEEE Standard for the Scheme Programming Language, IEEE Standard 1178-
1990. IEEE Computer Society, New York.

396 Bibliography

Igarashi, Atshushi, Pierce, Benjamin C., & Wadler, Philip. 1999. Featherweight Java:
A Minimal Core Calculus for Java and GJ. Pages 132–146 of: Meissner, Loren (ed.),
Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA ‘99).

Ingerman, Peter Z. 1961. Thunks, A Way of Compiling Procedure Statements with
Some Comments on Procedure Declarations. Communications of the ACM, 4(1), 55–
58.

Jacobs, Bart, & Rutten, Jan. 1997. A Tutorial on (Co)Algebras and (Co)Induction.
Bulletin of the European Association for Theoretical Computer Science, 62, 222–259.

Johnston, John B. 1971. The Contour Model of Block Structured Processes. SIGPLAN
Notices, 6(2), 55–82.

Kamin, Samuel. 1980. Final Data Type Specifications: A New Data Type Specification
Method. Pages 131–138 of: Proceedings ACM Symposium on Principles of Program-
ming Languages.

Kelsey, Richard, Clinger, William D., & Rees, Jonathan. 1998. Revised5 Report on
the Algorithmic Language Scheme. Higher-Order and Symbolic Computation, 11(1),
7–104.

Kiczales, G., des Rivières, J., & Bobrow, D. G. 1991. The Art of the Meta-Object Protocol.
Cambridge, MA: MIT Press.

Knuth, Donald E. 1968. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2, 127–145. Correction, 5:95–96, 1971.

Knuth, Donald E., & Pardo, L. T. 1977. The Early Development of Programming Lan-
guages. Pages 419–493 of: Belzer, J., Holzman, A. G., & Kent, D. (eds.), Encyclopedia
of Computer Science and Technology, vol. 6. New York: Marcel Dekker.

Kranz, David A., Kelsey, Richard, Rees, Jonathan A., Hudak, Paul, Philbin, James,
& Adams, Norman I. 1986. Orbit: An Optimizing Compiler for Scheme. Pages
219–223 of: Proceedings SIGPLAN ’86 Symposium on Compiler Construction.

Landin, Peter J. 1965a. Correspondence between ALGOL 60 and Church’s Lambda-
notation: Part I. Commun. ACM, 8(2), 89–101.

Landin, Peter J. 1965b. A Generalization of Jumps and Labels. Technical Report.
UNIVAC Systems Programming Research. Reprinted with a foreword in Higher-
Order and Symbolic Computation, 11(2):125–143, 1998.

Leroy, Xavier. 1994. Manifest Types, Modules, and Separate Compilation. Pages
190–122 of: Proceedings ACM Symposium on Principles of Programming Languages.

Lewis, Bil, & Berg, Daniel J. 1998. Multithreaded Programming with PThreads. Engle-
wood Cliffs, NJ: Prentice-Hall.

Liskov, Barbara, Snyder, Alan, Atkinson, R., & Schaffert, Craig. 1977. Abstraction
Mechanisms in CLU. Communications of the ACM, 20, 564–576.

Bibliography 397

McCarthy, John. 1960. Recursive Functions of Symbolic Expressions and their Com-
putation by Machine, Part I. Communications of the ACM, 3, 184–195.

McCarthy, John. 1962. Towards a Mathematical Science of Computation. Pages 21–28
of: Popplewell (ed.), Information Processing 62. Amsterdam: North-Holland.

Michie, Donald. 1968. “Memo” Functions and Machine Learning. Nature, 218(1–3),
218–219.

Milne, Robert, & Strachey, Christopher. 1976. A Theory of Programming Language
Semantics. London: Chapman and Hall.

Milner, Robin. 1978. A Theory of Type Polymorphism in Programming. Journal of
Computer and Systems Science, 17, 348–375.

Milner, Robin, Tofte, Mads, & Harper, Robert. 1989. The Definition of Standard ML.
Cambridge, MA: MIT Press.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David B. 1997. The Standard
ML Programming Language (Revised). Cambridge, MA: MIT Press.

Moggi, Eugenio. 1991. Notions of Computation and Monads. Information and Compu-
tation, 93(1), 55–92.

Morris, Jr., James H. 1968. Lambda Calculus Models of Programming Languages.
Ph.D. thesis, MIT, Cambridge, MA.

Morris, Jr., James H., & Wegbreit, Ben. 1977. Subgoal Induction. Communications of
the ACM, 20, 209–222.

Naur, Peter, et al. 1963. Revised Report on the Algorithmic Language ALGOL 60.
Communications of the ACM, 5(1), 1–17.

Parnas, David L. 1972. A Technique for Module Specification with Examples. Com-
munications of the ACM, 15(5), 330–336.

Paulson, Laurence C. 1996. ML for the Working Programmer. Second edition. New
York: Cambridge University Press.

Peyton Jones, Simon L. 1987. The Implementation of Functional Programming Languages.
Englewood Cliffs, NJ: Prentice-Hall International.

Peyton Jones, Simon L. 2001. Tackling the Awkward Squad: Monadic Input/Output,
Concurrency, Exceptions, and Foreign-Language Calls in Haskell. In: Hoare,
C.A.R., Broy, Manfred, & Steinbruggen, Ralf (eds.), Engineering Theories of Soft-
ware Construction, Marktoberdorf Summer School. Amsterdam, The Netherlands: IOS
Press.

Pierce, Benjamin C. 2002. Types and Programming Languges. Cambridge, MA: MIT
Press.

Pierce, Benjamin C. 2004. Advanced Topics in Types and Programming Languges. Cam-
bridge, MA: MIT Press.

398 Bibliography

Plotkin, Gordon D. 1975. Call-by-Name, Call-by-Value and the λ-Calculus. Theoretical
Computer Science, 1, 125–159.

Plotkin, Gordon D. 1977. LCF Considered as a Programming Language. Theoretical
Computer Science, 5, 223–255.

Plotkin, Gordon D. 1981. A Structural Approach to Operational Semantics. Technical
Report FN 19, DAIMI, Department of Computer Science. University of Aarhus,
Aarhus, Denmark.

Pratt, Terrence W., & Zelkowitz, Marvin V. 2001. Programming Languages: Design and
Implementation. 4th edition. Englewood Cliffs, NJ: Prentice-Hall.

Rees, Jonathan A., Clinger, William D., et al. 1986. Revised3 Report on the Algorithmic
Language Scheme. SIGPLAN Notices, 21(12), 37–79.

Reynolds, John C. 1972. Definitional Interpreters for Higher-Order Programming
Languages. Pages 717–740 of: Proceedings ACM National Conference. Reprinted,
with a foreword, in Higher-Order and Symbolic Computation 11(4) 363-397 (1998).

Reynolds, John C. 1975. User-Defined Types and Procedural Data Structures as Com-
plementary Approaches to Data Abstraction. In: Conference on New Directions on
Algorithmic Languages. IFIP WP 2.1, Munich.

Reynolds, John C. 1993. The Discoveries of Continuations. Lisp and Symbolic Compu-
tation, 6(3/4), 233–248.

Sabry, Amr, & Felleisen, Matthias. 1992. Reasoning about Programs in Continuation-
Passing Style. Pages 288–298 of: Proceedings 1992 ACM Conf. on Lisp and Functional
Programming. New York: ACM Press.

Sabry, Amr, & Felleisen, Matthias. 1993. Reasoning about Programs in Continuation-
Passing Style. Lisp and Symbolic Computation, 6(3/4), 289–360.

Sabry, Amr, & Wadler, Philip. 1997. A Reflection on Call-by-Value. ACM Transactions
on Programming Languages and Systems, 19(6), 916–941.

Scott, Michael L. 2005. Programming Language Pragmatics. Second edition. San Fran-
cisco: Morgan Kaufmann.

Sebesta, Robert W. 2007. Concepts of Programming Languages. 8th edition. Boston:
Addison-Wesley Longman Publishing Co., Inc.

Smith, Joshua B. 2006. Practical OCaml. Berkeley, CA: Apress.

Sperber, Michael, Dybvig, R. Kent, Flatt, Matthew, & van Straaten, Anton. 2007.
Revised6 Report on the Algorithmic Language Scheme. www.r6rs.org.

Springer, George, & Friedman, Daniel P. 1989. Scheme and the Art of Programming.
New York: McGraw-Hill.

Steele, Guy L. 1978. Rabbit: A Compiler for Scheme. Artificial Intelligence Laboratory
Technical Report 474. Massachusetts Institute of Technology, Cambridge, MA.

Bibliography 399

Steele, Guy L. 1990. Common Lisp: the Language. Second edition. Burlington, MA:
Digital Press.

Steele, Guy L., & Sussman, Gerald Jay. 1978. The Revised Report on SCHEME. Arti-
ficial Intelligence Memo 452. Massachusetts Institute of Technology, Cambridge,
MA.

Stoy, Joseph E. 1977. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. Cambridge, MA: MIT Press.

Strachey, Christopher. 1967. Fundamental Concepts in Programming Languages. Unpub-
lished notes from International Summer School on Programming Languages,
Copenhagen. Reprinted, with a foreword, in Higher-Order and Symbolic Computa-
tion 13(1–2) 11–49 (2000).

Strachey, Christopher, & Wadsworth, Christopher P. 1974. Continuations: A Mathe-
matical Semantics for Handling Full Jumps. Technical Monograph PRG-11. Oxford
University Computing Laboratory. Reprinted, with a foreword, in Higher-Order and
Symbolic Computation 13(1–2) 135–152 (2000).

Sussman, Gerald J., & Steele, Guy L. 1975. SCHEME: An Interpreter for Extend-
ed Lambda Calculus. Artificial Intelligence Memo 349. Massachusetts Institute
of Technology, Cambridge, MA. Reprinted, with a foreword, in Higher-Order and
Symbolic Computation 11(4) 405-439 (1998).

Thomas, Dave, Fowler, Chad, & Hunt, Andy. 2005. Programming Ruby: The Pragmatic
Programmers’ Guide. Second edition. Raleigh, NC: The Pragmatic Bookshelf.

Turing, A. M. 1936. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proc. London Math. Soc., 42(1), 230–265.

Ullman, Jeffrey D. 1998. Elements of ML Programming. ML97 edition. Englewood
Cliffs, NJ: Prentice-Hall.

van Rossum, Guido, & Drake, Fred L. Jr. 2006. The Python Language Reference Manual
(Version 2.5). Bristol, UK: Network Theory Ltd.

von Neumann, John. 1945. First Draft of a Report on the EDVAC. Technical Report.
Moore School of Electrical Engineering, University of Pennsylvania.

Wadler, Philip. 1992. The Essence of Functional Programming. Pages 1–14 of: Pro-
ceedings ACM Symposium on Principles of Programming Languages.

Wall, Larry, Christiansen, Tom, & Orwant, Jon. 2000. Programming Perl. 3rd edition.
Cambridge, MA: O’Reilly.

Wand, Mitchell. 1979. Final Algebra Semantics and Data Type Extensions. Journal of
Computer and Systems Science, 19, 27–44.

Wand, Mitchell. 1980a. Continuation-Based Multiprocessing. Pages 19–28 of: Allen, J.
(ed.), Conference Record of the 1980 LISP Conference. Palo Alto, CA: The Lisp Compa-
ny. Republished by ACM. Reprinted, with a foreword, in Higher-Order and Symbolic
Computation 12(3) 285–299 (1999).

400 Bibliography

Wand, Mitchell. 1980b. Continuation-Based Program Transformation Strategies. Jour-
nal of the ACM, 27, 164–180.

Wand, Mitchell. 1987. A Simple Algorithm and Proof for Type Inference. Fundamenta
Informaticae, 10, 115–122.

Wexelblatt, R. L. (ed.). 1978. Special Issue: History of Programming Languages Conference.
Vol. 13. New York: ACM Press.

Winskel, Glynn. 1993. The Formal Semantics of Programming Languages. Cambridge,
MA: MIT Press.

Wulf, William. 1971. BLISS: A Language for Systems Programming. Communications
of the ACM, 14(12), 780–790.

Index

Abadi, Martin, 378, 393
Abelson, Harold, 375, 377, 393
Abstract data types (ADTs), 31, 377.

See also Recursive data types
Abstraction boundary, 275, 278, 296,

377
Abstract syntax, 51–53, 371
Abstract syntax tree, 51–53, 57–58, 382
Abstract type, 34, 292, 296–300, 326
Accumulator, 203, 376
Action under application, 41. See also

Procedural representation
Activation record, 155 (ex. 5.15), 189

(ex. 5.49)
Actual parameter, 75
Adams, Norman, 396
Aho, Alfred, 371, 393
Algorithm W, 274 (ex. 7.29)
Aliases, 133
Allocation

of objects, 335, 337, 339, 362
in store, 104, 108–109, 113, 229–231

Alternation, 380. See also Or
Ancestor class, 329
A-normal form (ANF), 226 (ex. 6.34–

35), 376
Antecedent, 3
a(n)-type-name constructor, 48
Appel, Andrew, 376, 393
apply-env, 36, 38, 40
apply- procedures, 41
Argument, 75

Armstrong, Joe, 376, 393
Arnold, Ken, 377, 393
Arrays, 128–130 (ex. 4.29–30), 135 (ex.

4.36)
Assignment, 103, 122 (ex. 4.21). See

also Mutation
Association list (a-list), 39 (ex. 2.5, 2.8–

10)
Atkinson, R., 396
Auxiliary procedures, 22-25
Axiom, 3

Backus, John, 375, 393
Backus-Naur Form (BNF), 6
Barendregt, Henk, 374, 393
begin expression, 105, 108 (ex. 4.4),

112 (ex. 4.10), 153 (ex. 5.11), 231
(ex. 6.36), 334

Berg, Daniel, 376, 396
Bergin, Thomas, 378, 393
β-reduction, 138
Bidirectional sequences, 44 (ex. 2.18)
Bignum representation of natural num-

bers, 34
Binary method problem, 350 (ex. 9.25)
Binary search tree (Binary-search-tree),

10, 30 (ex. 1.34)
Binary semaphore, 187–189, 190
Binary tree (Bintree), 9, 11–12, 29 (ex.

1.31–33), 30 (ex. 1.35), 44-45 (ex.
2.19–20), 50 (ex. 2.24–25)

402 Index

Binding
in environment, 36
extent of, 90, 168 (ex. 5.30)
fluid, 122 (ex. 4.21)
lambda, 10, 18–19
let, 65–67, 90, 118, 119
letrec, 82–83, 90, 119
in module, 278
proc, 75, 90, 118, 119
of pseudo-variables, 336
of type variables, 252, 260
of variables, 87–91, 103

Birtwistle, Graham, 377, 393
Bobrow, Daniel, 396
Body
let, 65–67, 90, 118, 119
letrec, 82–83, 90, 119
of method, 327
of module, 278, 283, 319
of module program, 278
proc, 75, 90, 118, 119

bool type, 237
Boolean expressions (Bool-exp), 73 (ex.

3.14)
Bottom-up definition, 3, 371
Bound variable, 10, 75
de Bruijn indices, 91–93, 349 (ex. 9.19–

20), 374
de Bruijn, N. G., 394
Burstall, Rod, 371, 394
Byte code, 58

Call-by-name, 137–138, 375
Call-by-need, 137–138, 375
Call-by-reference, 130–133, 375
Call-by-value, 117, 130
Call-by-value-result, 135–136 (ex. 4.37)
call-with-current-continuation,

178 (ex. 5.42–44), 376
Cardelli, Luca, 378, 393
cases form, 46, 49, 50 (ex. 2.25), 374

Casting, 356
CHECKED, 240–243, 244, 245, 246
Child class, 329
Christiansen, Tom, 399
Church, Alonzo, 374, 394
Class environment, 336, 342–344, 346,

358–359, 362, 365–367, 370
Classes, 342–344, 346

declaration of, 326, 334, 365, 367
host, 331, 342
parent, 329
subclass, 329
superclass, 329, 331

Class variables, 348–349 (ex. 9.15)
CLASSES, 334–346
Client of ADT, 31, 32
Clinger, William, 374, 376, 394, 396,

398
Closures, 80, 85–87 (ex. 3.35–36), 121

(ex. 4.19)
Coinduction, 371
Command continuations, 155 (ex. 5.16)
Compiler, 58
Concatenation, 380
Conclusion, 3
cond expression, 73 (ex. 3.12), 101 (ex.

3.38)
Concrete syntax, 51–53, 371
Concrete types, 34, 292, 294–295
Conditionals, 63, 65, 146, 221 (ex.

6.23), 243 (ex. 7.7)
Consequent, 3
Constructors, 33, 43
Context argument, 23–24
Context-free grammar, 10, 371, 382
Context-sensitive constraint, 10–11, 327,

371
Continuation-passing style, 141, 193

examples of, 193–200
transformation to, 200, 212–220, 222–

224, 375, 376

Index 403

Continuations, 141–153, 156, 375
command continuations, 155 (ex.

5.16)
data structure representation of, 146,

148, 153 (ex. 5.2), 163, 164, 194,
201 (ex. 6.4), 225 (ex. 6.31)

procedural representation of, 146,
147, 153 (ex. 5.1), 178 (ex. 5.41),
194, 198, 201 (ex. 6.4)

Contour diagrams, 89, 374
Contract, 1, 13
Contravariant subtyping, 321, 361–

362, 363
Control context, 139–141, 144, 162, 203
Covariant subtyping, 361–362, 363
CPS-IN, 203, 204
CPS-OUT, 206, 208
CPS Recipe, 200
Critical region, 187–188
Curry, Haskell, 376
Currying, 80 (ex. 3.20), 81 (ex. 3.23),

301 (ex. 8.15)

Dahl, Ole-Johan, 393
Danvy, Olivier, 376, 394
Data abstraction, 31, 377
Data structure representation

of continuations, 146, 148, 153 (ex.
5.2), 163, 164, 194, 201 (ex. 6.4),
225 (ex. 6.31)

of environments, 37–38, 39–40 (ex.
2.5–11)

of procedure values, 79–80, 81 (ex.
3.26), 82 (ex. 3.28), 101 (ex. 3.42),
225 (ex. 6.31)

of threads, 189 (ex. 5.48)
of trampolining, 160 (ex. 5.18–20)

Declaration
of classes, 326, 334, 365, 367
of method, 334, 365, 368
of procedures, 75–77, 80 (ex. 3.19),

101 (ex. 3.43–44), 214

of variables, 87–91
Deduction, 5, 70 (ex. 3.4), 72 (ex. 3.5)
define-datatype form, 46–50, 374
Defined language, 57, 374
Defining language, 57, 374
Defunctionalization, 41, 155, 157–159,

160 (ex. 5.22), 169 (ex. 5.33), 171
(ex. 5.34)

Delegates, 378
Denotational semantics, 375
Denoted values, 61
Dereferencing, 104, 109, 113, 229–231
Derivation, syntactic, 8
Derivation tree, 5, 70 (ex. 3.4), 72 (ex.

3.5)
Descendant class, 329
Difference expressions, 62–63, 149
Diff-trees (Diff-tree), 34
Domain-specific languages, x–xi, xii-

xiii, 49–50, 53
Dominus, Mark, 378, 394
Dot notation, 4
Double dispatch, 357 (ex. 9.32)
do-while statement, 123 (ex. 4.24)
Drake, Fred, 399
Duba, Bruce, 394
Dybvig, R. Kent, 374, 394, 398
Dynamic assignment, 122
Dynamic binding (dynamic scope), 82

(ex. 3.28–29), 87 (ex. 3.37), 168
(ex. 5.30)

Dynamic dispatch, 332
Dynamic extent, 168 (ex. 5.30)
Dynamic properties of programs, 90–

91

Eager evaluation, 136
Effects, computational, 103, 109, 226–

232, 274 (ex. 7.30), 375
empty-env, 36, 38, 40
Environment ADT (Env), 35–41, 50

(ex. 2.21)

404 Index

Environments, 35, 61–62
association-list representation of, 39

(ex. 2.5, 2.8–10)
class environment, 336, 342–344, 346,

358–359, 362, 365–367, 370
data structure representation of, 37–

38, 39–40 (ex. 2.5–11)
for method call, 340–342
method environments, 345
nameless, 98–99
procedural representation of, 40–41,

42 (ex. 2.12–14), 85 (ex. 3.34)
ribcage representation of, 40, 101

(ex. 3.41)
static, 94–96
type environment, 239

eopl:error procedure, 15
Equational specification, 65, 374
Error handling, 15
Exception handling, 171–177, 202 (ex.

6.8), 232
Execution for effect, 109
Expanded type, 303–307
EXPLICIT-REFS, 104–111, 229–231, 248

(ex. 7.10), 272 (ex. 7.26), 375
Expressed values, 61, 73 (ex. 3.13)
Expressions

LET, 62–63, 65–67
simple, 206, 226
tail form, 203–207, 375

extend-env, 36, 38, 40
extend-env*, 36, 38, 39–40 (ex. 2.10–

11), 342
extend-env-rec, 83, 85–86 (ex. 3.35)
Extent of variable binding, 90, 168 (ex.

5.30)
Extractors, 44–43

Factorial function, 34 (ex. 2.1), 81 (ex.
3.23), 87 (ex. 3.37), 139–140, 153
(ex. 5.13–14), 162, 168 (ex. 5.29),
193–197, 202–203, 204–205

Felleisen, Matthias, 371, 376, 394, 395,
398

Fibonacci sequence, 198–199, 226 (ex.
6.34)

Field of object, 325, 326, 340–342
Filinski, Andrzej, 376, 394
Findler, Robert, 394
Fischer, Michael, 376, 394
Flanagan, Cormac, 376, 394
Flatt, Matthew, 378, 394, 398
Fluid binding, 122 (ex. 4.21)
Follow the Grammar, 22, 371

examples of, 12–21
Formal parameter, 75
Fowler, Chad, 399
Frame, 155 (ex. 5.15), 189 (ex. 5.49)
Free occurrence of variable, 18
Freeze, 136
Friedman, Daniel, 371, 375, 376, 377,

394, 395, 398

Gamma, Erich, 378, 395
Generalization, 22–23, 24, 371
Giarratana, V., 377, 395
Gibson, Richard, 378, 393
Gimona, F, 395
Goguen, Joseph, 374, 377, 395
Goldberg, Adele, 377, 395
Gordon, Andew, 371, 395
Gosling, James, 377, 393, 395
goto, 162
Grammars, 6–11, 371, 382

Hailpern, Brent, 378, 395
Hankin, Chris, 374, 395
Harper, Robert, 397
Haynes, Christopher, 395
Helm, Richard, 395
Hewitt, Carl, 377, 395
Hindley, Roger, 376, 395
Host class, 331, 342
Hudak, Paul, 375, 395, 396
Hunt, Andy, 399
Hypothesis, 3

Ice cream sundaes, 322
Igarashi, Atshushi, 378, 396

Index 405

Ill-typed, 238
Implementation language, 57
Implementation

of ADT, 31, 377
of module interface, 278
of object-oriented interface, 353, 356

IMPLICIT-REFS, 113–119, 243 (ex. 7.6),
375

continuation-passing interpreter for,
153 (ex. 5.9–10)

Inclusive or, 19
Induction hypothesis, 11
Induction, proof by, 11–12, 25 (ex.

1.14), 197, 200 (ex. 6.2), 371
Inductive specifications, 1–5, 371

recursive procedures based on, 12–
21

INFERRED, 248–270, 271, 272
Ingerman, Peter, 375, 396
Inheritance, 326, 329–334
Inherited attribute, 23–24, 371
Inlining, 22 (ex. 1.12), 195, 199, 201

(ex. 6.4, 6.7)
in-S?, 1
Instance of class, 326
Instance variables, 325, 326
Interface

of ADT, 31
of class, 353, 365, 369
of module, 276, 278

Interface polymorphism, 353
Interpreter, ix–xii, xv, 374

continuation-passing, 141–153, 154–
155, 156, 201 (ex. 6.7)

Interpreter Recipe, 37
int type, 237
Invariant, 10–11, 327, 371
Iterative control behavior, 140, 153 (ex.

5.14), 193
Jacobs, Bart, 371, 396
Jim, Trevor, 376, 393
Johnson, Ralph, 395

Johnston, John, 374, 396
Joy, Bill, 395

Kamin, Samuel, 377, 396
Kelsey, Richard, 374, 396
Kiczales, Gregor, 377, 396
Kleene plus, 7, 54 (ex. 2.29)
Kleene star (closure), 7, 54 (ex. 2.29),

381
Known procedures, 101 (ex. 3.43–44)
Knuth, Donald, 371, 378, 396
Kranz, David, 376, 396
Krishnamurthi, Shriram, 394

Lambda calculus, 9, 138, 374
Lambda expression (LcExp), 9–10, 12

(ex. 1.5), 18–19, 42–43, 43–44 (ex.
2.15–17), 50 (ex. 2.23), 54 (ex.
2.27–30)

abstract vs. concrete syntax, 51–53
Scheme implementation, 46–50

Lam, Monica, 393
Landin, Peter, 376, 396
Language processors, 57–59
Lazy evaluation, 136–138, 375
Leroy, Xavier, 377, 396
LET, 60–70
letcc expression, 178 (ex. 5.42–44),

232, 376
letmutable expression, 121 (ex. 4.20)
LETREC, 82–83

continuation-passing interpreter for,
141–153, 154–155, 156

nameless version of, 91–100
let* scoping, 74 (ex. 3.17), 278, 280,

284, 306
Lewis, Bil, 376, 396
Lexical addressing, 91–93, 349 (ex.

9.19–20), 374
Lexical depth, 91–93
Lexical scope rules, 76–77, 89, 374
Lexical specification, 58, 379
Lexical variables, 89

406 Index

Liskov, Barbara, 377, 396
list expression, 73 (ex. 3.10), 108 (ex.

4.5), 112 (ex. 4.11), 153 (ex. 5.6),
221 (ex. 6.24)

list-length, 13–14
List of integers (List-of-Int), 4, 6–7, 28–

29 (ex. 1.28–30)
List of symbols (List-of-Symbol), 15
List operations, 73 (ex. 3.9), 153 (ex.

5.5), 247 (ex. 7.9), 271 (ex. 7.25),
334

Lists (List), 13–18, 27–29 (ex. 1.15–27)
list-sum, 24, 201 (ex. 6.4), 203 (ex.

6.10)
Locations, 103
Łukasiewicz, Jan, 55 (ex. 2.31)
L-values, 104, 375. See also References

Machine language, 58, 374
MacQueen, David, 397
McCarthy, John, 371, 374, 375, 397
Member function. See Method of

object
Member of object, 325, 326, 340–342
Memoization, 138, 375
Message passing, object-oriented (method

calls), 325, 327, 335–336, 337, 340–
342, 359–362

Metacircularity, 374, 375
Method environments, 345
Method of object, 325, 326–327

declaration of, 334, 365, 368
overloading of, 349 (ex. 9.16, 9.22)

Michie, Donald, 375, 397
Milne, Robert, 375, 397
Milner, Robin, 274, 374, 375, 376–377,

397
Module procedures, 311–323
Modules, 275–276, 326, 377

parameterized, 311–323
simple, 276–289

Moggi, Eugenio, 375, 397
Monads, 375
Montanari, Ugo, 395

Morris, Jr., James, 371, 376, 397
Multiple-argument procedures, 80–81

(ex. 3.20–21), 83 (ex. 3.31), 85 (ex.
3.33), 113 (ex. 4.13), 121 (ex. 4.17),
153 (ex. 5.8), 166 (ex. 5.25), 203,
243 (ex. 7.5), 270 (ex. 7.24), 289
(ex. 8.4), 310 (ex. 8.16), 323 (ex.
8.25), 334

Multiple inheritance, 329
Multiple-procedure declaration, 84–

85 (ex. 3.32–33), 87 (ex. 3.36–37),
121 (ex. 4.18–19), 203, 243 (ex.
7.5), 259, 270 (ex. 7.24), 289 (ex.
8.4), 310 (ex. 8.16), 334

Multiple-variable declaration, 74 (ex.
3.16), 153 (ex. 5.7), 221 (ex. 6.25),
243 (ex. 7.5), 270 (ex. 7.24), 289
(ex. 8.4), 310 (ex. 8.16), 334

Multithreaded programs, 179–189, 376
MUTABLE-PAIRS, 124–128, 129, 248

(ex. 7.11)
Mutable variables, 116, 121 (ex. 4.16),

375
Mutation, 104, 109, 113, 229–231. See

also Assignment
Mutex, 187–189, 190
Mutual recursion, 20–21, 48, 81 (ex.

3.24), 84–85 (ex. 3.32-33), 87 (ex.
3.36–37), 124 (ex. 4.26)

Myhrhaug, Bjorn, 393

Nameless environment, 98–99
Name mangling, 349 (ex. 9.22)
Names, eliminating, 374

from LETREC, 91–100
from CLASSES, 349 (ex. 9.19–20)

Natural numbers ADT, 32–33
with bignum representation, 33
with diff-tree representation, 34–35

(ex. 2.3)
module implementation of, 316–317

(ex. 8.20–22)
with Scheme numbers, 33
with unary representation, 33

Index 407

Naur, Peter, 375, 397
von Neumann, John, 374, 375, 399
Nielsen, Lasse, 376, 394
No Mysterious Auxiliaries, 23, 197
Nonstandard control flow, 171–177,

202 (ex. 6.8), 232
Nonterminal symbols, 6, 20–21, 22,

51–52, 382
No-occurrence invariant, 258, 262–263
No type, 238
nth-element, 14–16
number-elements, 22–23, 30 (ex. 1.36)

Objects, 325, 339
Observers, 33
Occurrence check, 258
occurs-free?, 18–19, 43, 46–47, 201 (ex.

6.4)
Opaque type, 34, 292, 296–300, 326
OPAQUE-TYPES, 292–311
Operand position, 140, 206
Operands, 75, 136–138, 141, 152–153,

203, 215–220
Operator, 75
Or, 7, 19
Orwant, Jon, 399
Overloading of method, 349 (ex. 9.16,

9.22)
Overriden method, 331, 365

Pair types, 243 (ex. 7.8)
Parameterized modules, 311–323
Parameter passing, 76, 118, 119, 335–

336
Pardo, L., 378, 396
Parent class, 329
Parnas, David, 377, 397
parse-expression, 53, 54 (ex. 2.29–30)
Parser generator, 53, 58–59
Parsing, 53, 58–59, 371, 382–383, 385–

391
partial-vector-sum, 24–25
Paulson, Laurence, 376, 377, 397
Peyton Jones, Simon, 374, 375, 397

Philbin, James, 396
Pierce, Benjamin, 377, 396, 397
Pizza, 191
Plotkin, Gordon, 371, 374, 375, 376,

398
Polish prefix notation, 55 (ex. 2.31)
Polymorphism, 237, 255, 266, 269–270,

273–274 (ex. 7.28–30), 329, 353,
377

Pratt, Terrence, 398
Predicates, 42–43
Pre-emptive scheduling, 179
Prefix lists (Prefix-list), 55 (ex. 2.31)
Printing, 74 (ex. 3.15), 227–229
Private variables, 105
PROC, 75–80
Procedural representation, 377

of continuations, 146, 147, 153 (ex.
5.1), 178 (ex. 5.41), 194, 198, 201
(ex. 6.4, 6.7)

of environments, 40–41, 42 (ex. 2.12–
14), 85 (ex. 3.34)

of procedure values, 79, 82 (ex. 3.28)
of stacks, 42 (ex. 2.12)
of trampolining, 159

Procedure call, 75–77, 151–152, 217–
220, 226

Procedure declaration, 75–77, 80 (ex.
3.19), 101 (ex. 3.43–44), 214

Procedure types, 237, 240, 241–242
for module procedures, 318, 319–

323
Procedure values (Proc), 75–77

data structure representation of, 79–
80, 81 (ex. 3.26), 82 (ex. 3.28), 101
(ex. 3.42), 225 (ex. 6.32)

procedural representation of, 79, 82
(ex. 3.28)

PROC-MODULES, 311–323
Production of grammar, 7, 51–52, 385
Protection in object-oriented program-

ming, 348 (ex. 9.11–13)
Prototype objects, 352 (ex. 9.29)
Pseudo-variable, 336, 340

408 Index

Qualified type, 295, 302
Qualified variable, 278, 283
Quantum, 179

read statement, 123 (ex. 4.23)
Record, 48
Recursive control behavior, 140, 153

(ex. 5.14)
Recursive data types. See also Abstract

data types
programs that manipulate, 12–13,

22–25, 45–50
proving properties of, 11–12, 24–25
specifying, 1–11, 43

Recursive programs
deriving, 12–13, 22
design and implementation of, 81

(ex. 3.25), 87 (ex. 3.37), 121 (ex.
4.16), 371, 374

examples of, 12–21, 25–31
mutual recursion, 20–21, 48, 81 (ex.

3.24), 84–85 (ex. 3.32-33), 87 (ex.
3.36–37), 124 (ex. 4.26)

Red-blue trees (Red-blue-tree), 29 (ex.
1.33), 51 (ex. 2.26)

Rees, Jonathan, 374, 394, 396, 398
References, 87–91, 103–104

explicit, 104–111, 229–231, 248 (ex.
7.10)

implicit, 113–119, 231 (ex. 6.37), 243
(ex. 7.6)

Registerization, 160–166, 167, 168, 169,
170, 189 (ex. 5.50), 194, 195, 201
(ex. 6.4), 212 (ex. 6.16), 225 (ex.
6.33)

Regular expression, 380
remove-first, 16–18, 201 (ex. 6.4)
report- procedures, 15
Representation independence, 32, 35
Reynolds, John, 375, 377, 398
Ribcage representation, 40, 101 (ex.

3.41)

des Rivières, Jim, 396
Robson, David, 377, 395
van Rossum, Guido, 378, 399
Rules of inference, 3, 65
Rules-of-inference definition, 3, 4, 371
Rutten, Jan, 371, 396
R-values, 104, 375

Sabry, Amr, 376, 394, 398
Safe evaluation

thread synchronization, 186–189
type safety, 233–235, 358

Scanning, 58, 379–382, 383–385
Schaffert, Craig, 396
Scheduler, 179, 183, 184
Scope of variable declaration, 87–91

dynamic, 82 (ex. 3.28–29), 87 (ex.
3.37), 168 (ex. 5.30)

Scott, Michael, 398
Sebesta, Robert, 398
self, 328–329, 335, 336, 342, 359
Semaphore, 187–189, 190
Semi-infinite extent, 90, 168 (ex. 5.30)
Separated list notation, 7–8
Sequences, bidirectional, 44 (ex. 2.18)
Sequentialization, 201 (ex. 6.4–5), 221

(ex. 6.20), 226 (ex. 6.34–35)
setdynamic expression, 122 (ex. 4.21)
Sethi, Ravi, 393
S-exp (S-exp), 8–9, 20–21, 48
Shadowing, 89, 330
Shared variables, 103, 104, 106, 122

(ex. 4.21), 160, 179, 186–189
Simple expressions, 206, 226
SIMPLE-MODULES, 276–289
Single inheritance, 329
S-list (S-list), 8–9, 20–21, 27 (ex. 1.18,

1.20), 28 (ex. 1.27), 48
Smaller-Subproblem Principle, 12–13
Smallest set, 3, 6 (ex. 1.3)
Smith, Joshua, 376, 377, 398
Snyder, Alan, 396

Index 409

Sound type system, 234
Source language, 57
Sperber, Michael, 374, 398
Springer, George, 377, 398
Stacks, 37 (ex. 2.4), 42 (ex. 2.12), 50

(ex. 2.22)
State. See EXPLICIT-REFS; IMPLICIT-

REFS
Statements, 122–124 (ex. 4.22–27), 155

(ex. 5.16)
Static environment, 94–96
Static method dispatch, 333, 350 (ex.

9.23), 368 (ex. 9.37), 371 (ex. 9.42)
Static properties of programs, 88, 91
Static variables, 348–349 (ex. 9.15)
Steele, Guy, 374, 376, 377, 395, 398, 399
Storable values, 103, 106
Store, 103, 109–112, 229–231, 375
Store-passing specifications, 107
Stoy, Joseph, 374, 399
van Straaten, Anton, 398
Strachey, Christopher, 375, 397, 399
Subclass, 329
Subclass polymorphism, 329, 353, 361
Subroutines, 124
subst, 20–21, 201 (ex. 6.4)
Substitution

in s-lists, 20–21
type, 252, 253, 258, 260–262

Subtype polymorphism, 361
Super calls, 332–334, 336, 337
Superclass, 329, 331
Sussman, Gerald Jay, 374, 375, 376,

377, 393, 399
Synchronization, 186–189
Syntactic categories, 6, 20–21, 22, 51–

52, 382
Syntactic derivation, 8

Tables, 301 (ex. 8.15), 317 (ex. 8.23)
Tail calls, 140, 144, 162, 193, 205
Tail Calls Don’t Grow the Continua-

tion, 144, 146, 205

Tail-form expressions, 203–207, 375
Tail position, 205–206
Target language, 58
Terminal symbols, 6
Thatcher, James, 395
Thaw, 136
Thomas, Dave, 378, 39
Threads, 179–189, 376
throw expression, 178 (ex. 5.42–44),

232
Thunk, 136–137, 375
Time slice, 179
Tofte, Mads, 397
Tokens, 58, 379, 381–382
Top-down definition, 2,3, 371
Trampolining, 155, 157–159, 166 (ex.

5.26), 194, 196, 212 (ex. 6.17)
data structure representation of, 160

(ex. 5.18–20)
procedural representation of, 159

Translation
to CPS, 212–220, 222–224
nameful to nameless LETREC, 93–

96, 97, 101 (ex. 3.40–42)
Transparent type, 34, 292, 294–295
Turing, Alan, 374, 399
Type abbreviations, 34, 292, 294–295
Type checking

for expressions, 240–243, 244, 245,
246

for module procedures, 319–323
for modules, 284–289, 303–310, 311
object-oriented, 352–367, 368, 369,

370
Type definition, 302
TYPED-OO, 352–357
Type environment, 239
Type equations, 249–250, 377

solving, 252, 258, 272 (ex. 7.27)
Type expression, 260
Type inference, 376–377

examples of, 157–158, 250–258

410 Index

for expressions, 240, 248–250, 266–
270, 271, 272

for modules, 291 (ex. 8.11)
Type structure

of basic values, 235–237, 238–240
of module interfaces, 287–288
of module procedures, 319–323
of objects and classes, 353
opaque and transparent types, 303–

310, 311
Type variable, 250

Ullman, Jeffrey, 376, 377, 393, 399
Unary representation of natural num-

bers, 33
Unification, 252, 262–263
unpack expression, 74 (ex. 3.18), 101

(ex. 3.39)
unparse-lc-expression, 53, 54 (ex. 2.28)

value-of
for CALL-BY-NAME, 137
for CALL-BY-NEED, 137–138
for CALL-BY-REFERENCE, 132–133
for CLASSES, 336–346
continuation-passing version of, 141–

153, 154–155, 156, 201 (ex. 6.7)
for CPS-OUT, 207, 209
for EXPLICIT-REFS, 107–109, 112–

113 (ex. 4.12)
for IMPLICIT-REFS, 117–118
for LET, 62–63, 65–67, 70, 71–72
for LETREC, 83, 142, 142
for MUTABLE-PAIRS, 124, 126
nameless version, 99–100
for OPAQUE-TYPES, 302–303
for PROC, 76–77
for PROC-MODULES, 319, 320
registerized version, 160–166, 167,

168, 169, 170
for SIMPLE-MODULES, 282–284, 285

for THREADS, 182, 185–186

trampolined version, 157–15
for TYPED-OO, 356–357

Value restriction, 274 (ex. 7.30)
Variable(s)

aliasing of, 133
binding of (see Binding)
bound, 10, 75
class, 348–349 (ex. 9.15)
declarations, 87–91
eliminating, 91–100
in environments, 35, 36
extent of, 90, 168 (ex. 5.30)
free, 18
lexical, 89
mutable, 116, 121 (ex. 4.16)
private, 105
qualified, 278
scope of (see Scope of variable dec-

laration)
shadowing of, 89
shared, 103, 104, 106, 122 (ex. 4.21),

160, 179, 186–189
static, 348–349 (ex. 9.15)
type variable, 250

Variant, 47
vector-sum, 24–25
Virtual machine, 58
Vlissides, John, 395

Wadler, Philip, 375, 376, 396, 398, 399
Wadsworth, Christopher, 375, 399
Wagner, Eric, 395
Wall, Larry, 378, 399
Wand, Mitchell, 376, 377, 394, 395, 399,

400
Wegbreit, Ben, 371, 397
Well-typed, 238
Wexelblatt, R., 378, 400
Winskel, Glynn, 375, 400
Wise, David, 375, 395
Wright, Jesse, 395
Wulf, William, 375, 400

Zelkowitz, Marvin, 398

